
CARTA Interface Control Document

Angus Comrie and Rob Simmonds

Sep 01, 2023

CONTENTS:

1 Changelog 3

2 Versioning 7
2.1 Introduction . 7
2.2 Context . 7
2.3 Behaviour . 8
2.4 Layer descriptions . 39
2.5 Protocol buffer reference . 41

i

ii

CARTA Interface Control Document

Date 14 August 2023

Authors Angus Comrie, Rob Simmonds and the CARTA development team

Version 28.13.0

ICD Version Integer 28

CARTA Target Version 4.0

CONTENTS: 1

CARTA Interface Control Document

2 CONTENTS:

CHAPTER

ONE

CHANGELOG

Version Date Description
0.1.7 30/08/18 Added optional field channel_histogram_data to the image view message
0.1.8 07/09/18 Added computed_entries map to the File Info Extended message
0.1.9 10/09/18 Changed computed_entries map to an array of HeaderEntry messages
0.1.10 10/09/18 Added optional field spatial_requirements to the SET_CURSOR message
0.1.11 20/09/18 Added file_id field to SET_REGION and fixed control points typo
0.1.12 18/10/18 Deprecated channel_vals field in SPECTRAL_PROFILE_DATA
0.1.13 30/11/18 Added details on per-cube histogram calculations
0.1.14 07/02/19 Added $BASE folder placeholder
0.1.15 05/03/19 Added target version info
0.1.16 25/03/19 Removed stokes, channel_min and channel_max fields from SET_REGION,

and changed StatisticsValue value field to a double type.
0.1.17 27/03/19 Added NumPixels and NanCount stats types
0.1.18 28/03/19 Changed rotation units from radians to degrees
0.2.0 07/05/19 Changed message header information, adjusted stats enum values, added double

value support for spectral profile
0.2.1 09/05/19 Added feature flag enums as well as event type enums. Updated animation in-

formation and sequence diagrams to include flow control
0.2.2 14/05/19 Added information on tiled rendering
4.0.0 02/07/19 Expanded sequence diagrams and text on tiled rendering and animation.

Changed version numbering to match ICD version integer
4.0.1 04/07/19 Fixed incorrect sequence diagrams for file loading
5.0.0 15/07/19 Switched to byte fields instead of repeated float/double for efficiency reasons in

spatial and spectral profile messages
6.0.0 19/07/19 Animation ID and timestamps for ACKs
7.0.0 23/07/19 Region file browser and import/export messages
7.0.1 08/08/19 Region export coordinate type
8.0.0 21/08/19 Added messages for retrieving and setting user preferences and layouts
9.0.0 17/10/19 Added/updated messages for contour parameters and streaming
10.0.0 25/10/19 Updated messages for contour streaming
11.0.0 20/11/19 Added messages to resume the session and its ACK
12.0.0 18/02/20 Updated messages for tiled rendering usage during animation
13.0.0 19/05/20 Updated messages for scripting service information (WIP)
14.0.0 28/05/20 Updated messages for catalogs
15.0.0 04/07/20 Added date field to file info, reordered file types alphabetically
16.0.0 23/07/20 Added sub-message for region style, replace RegionProperties with map
17.0 27/07/20 Added spectral line request and response

continues on next page

3

CARTA Interface Control Document

Table 1 – continued from previous page
Version Date Description
17.1.0 11/08/20 Non-breaking change: added map of matched frames for spectral matched ani-

mation
17.2.0 12/08/20 Non-breaking change: added intensity limit field to line ID query
18.0.0 11/12/20 Added extrema enum value to StatsType. Removed deprecated mes-

sages: SetUserLayout, SetUserLayoutAck, SetUserPreferences,
SetUserPreferencesAck, and SetRegionRequirements.

18.1.0 08/01/21 Non-breaking change: added beam_table (of type Beam) to OpenFileAck .
19.0.0 07/01/21 Adjusted FileInfoResponse to include map of extended file info messages
20.0.0 13/04/21 Added ConcatStokesFiles messages
20.1.0 23/04/21 Renamed REGION_WRITE_ACCESS to READ_ONLY in ServerFeatureFlags.
20.2.0 26/04/21 Added additional fields to SaveFile for sub-image support.
21.0.0 05/05/21 Added ListProgress and StopFileList messages
22.0.0 28/06/21 Added DirectoryInfo message.
23.0.0 28/06/21 Added SpatialConfig submessage with fields for spatial profile mip and

range, and added mip field to SpatialProfile. Updated comments for
SpatialConfig and SpectralConfig.

23.1.0 23/07/21 Added SplataloguePing and SplataloguePong messages.
23.1.1 29/07/21 Added return_path to ScriptingRequest message.
24.0.0 30/07/21 Added the stokes to SetStatsRequirements, HistogramConfig, and

RegionHistogramData messages. Removed the channel from Histogram .
24.1.0 12/10/21 Added platform_strings to RegisterViewerAck message.
24.2.0 11/11/21 Added filter_mode to FileListRequest, CatalogListRequest and

RegionListRequest messages; Added Unknown to CatalogFileType.
25.0.0 06/12/21 Added PvRequest, PvResponse, PvProgress, and StopPvCalcmessages for

PV generator.
26.0.0 13/01/22 Removed grpc_port from RegisterViewerAck message. Renamed

GRPC_SCRIPTING to SCRIPTING in ServerFeatureFlags. Removed all ref-
erences to gRPC in docs.

26.1.0 01/03/22 Added lel_expr to OpenFile message.
26.2.0 19/04/22 Added rest_freq to SaveFile message.
27.0.0 21/04/22 Added FittingRequest and FittingResponse messages for image fitting.
27.1.0 27/04/22 Added Ptotal, Plinear, PFtotal, PFlinear, and Pangle to

PolarizationType enum. Added stokes_indices to StartAnimation
message.

27.2.0 05/05/22 Added SetVectorOverlayParameters and VectorOverlayTileData mes-
sages. Moved TileData to shared.

27.3.0 09/05/22 Added width to SetSpatialRequirements and LineProfileAxis to
SpatialProfile.

28.0.0 07/06/22 Removed spectral line request/response and Splatalogue ping/pong messages.
28.1.0 17/06/22 Added region_id and fov_info to FittingRequest message.
28.2.0 08/09/22 Added spectral_range, reverse, and keep to PvRequest message.
28.3.0 30/11/22 Added keep to MomentRequest message.
28.4.0 05/12/22 Added additional fields to FittingRequest and FittingResponse for gener-

ating model and residual images. Added FittingProgress and StopFitting
messages for updating progress and canceling tasks.

28.5.0 10/01/23 Added axes numbers to FileInfoExtended message for dealing with swapped
axes image cubes.

28.6.0 17/03/23 Added additional fields to FittingResponse for image fitting background off-
set as a free parameter.

continues on next page

4 Chapter 1. Changelog

CARTA Interface Control Document

Table 1 – continued from previous page
Version Date Description
28.7.0 23/03/23 Added annotation regions to RegionType and added additional style parameters

in AnnotationStyle to RegionStyle.
28.8.0 14/04/23 Added number of bins and pixel bounds to HistogramConfig in

SetHistogramRequirements message. Added HistogramConfig to
RegionHistogramData message.

28.9.0 28/04/23 Added sub-message PvPreviewSettings to PvRequest and message
PvPreviewData to PvResponse for generating a PV preview image. Added
StopPvPreview to cancel preview image and ClosePvPreview to release pre-
view resources.

28.10.0 18/05/23 Added lel_expr to ImageProperties message.
28.11.0 20/06/23 Added support_aips_beam to FileInfoRequest, OpenFile, and

ImageProperties messages.
28.12.0 15/08/23 Added sync_id and tile_count to RasterTileSync and RasterTileData

messages.
28.13.0 23/08/23 Added integrated flux to FittingResponse message.

5

CARTA Interface Control Document

6 Chapter 1. Changelog

CHAPTER

TWO

VERSIONING

• Major version change (1.2.3 -> 2.0.0): this is a breaking change.

• Minor version change (1.2.3 -> 1.3.0): this is added functionality which is optional and non-breaking.

• Patch (1.2.3 -> 1.2.4): this is a change which does not affect functionality (e.g. a typo fix in a comment, or a
changed field name).

Some legacy changelog entries may not follow this approach. Only changes to the protocol buffer source files should
be recorded here; changes only to this documentation do not require a version bump.

2.1 Introduction

The CARTA application is designed in a server-client model, with the backend (written in C++) communicating with
the frontend (Web-based, using HTML and JavaScript web frameworks) through an interface defined in this document.
While CARTA is required to support a number of file formats (FITS, CASA, HDF5 and Miriad), throughout the doc-
ument, nomenclature will be defaulted to FITS files, such as when referring to multiple HDUs in a file, and header
entries.

Throughout this document, things that require some clarity, or are not finalised are commented on in this font style.

2.2 Context

There are two distinct usage scenarios for frontend-backend configuration in CARTA. Firstly, when used as a desktop
application, the frontend and backend both run locally. The backend is run as an application that communicates with
the frontend, which is presented to the user as a desktop application in the form of an Electron-wrapped web view [1].

The second usage scenario is that of a remote viewer, where the backend is running on a remote server, while the
frontend is loaded in the user’s browser of choice (as long as that choice is Chrome, Firefox, Safari or Edge) by visiting
a URL associated with the remote server. A third possible configuration is running the desktop Electron application,
while connecting to a specific server IP for remote data. This is not a high priority, as most usage scenarios would be
better handled through accessing the frontend through a remote URL.

In both of these scenarios, communication between the frontend and backend takes place over a standard WebSocket
[2] communication channel, with message formats defined using protocol buffers [3], based on the message structures
defined in Section 4.1.

Image data is sent to the frontend as either uncompressed or compressed floating point data. The frontend can request
which type of data is sent from the backend, which compression library to use, and what compression quality to use. Two
lossy floating-point compression libraries are supported in the ICD: ZFP [4] and SZ [5] (although SZ is not implemented
at this point on either the frontend or backend). A general investigation of the compression performance of these two
libraries shows that ZFP is consistently faster, while SZ offers slightly better compression ratios at the expense of

7

https://electronjs.org/
https://en.wikipedia.org/wiki/WebSocket
https://developers.google.com/protocol-buffers/
https://github.com/LLNL/zfp
https://github.com/disheng222/SZ

CARTA Interface Control Document

compression and decompression speed. The current implementation of the SZ library is not thread safe, meaning that
compression on the backend would have to be implemented sequentially. Note that, due to the frontend’s use of web
workers to decompress data, this limitation is overcome, as each web worker operates in a separate execution space.
ZFP should be preferred when network bandwidth is sufficient. In the case of a desktop application, uncompressed
data or very high quality ZFP compressed data should be favoured. When using uncompressed data, the FP32 floating
point data is copied directly to and from the uint8 array specified by TileData (using 4 uint8 entries per 32-bit floating
point entry).

Contour data is streamed as either uncompressed floating points, or compressed decimated fixed-point data. Contour
data is losslessly compressed using the Zstandard [6] library, after being decimated to a fixed-point value. Vector
overlay data follows the same approach as image data.

2.3 Behaviour

2.3.1 Connection

Connection takes place via the WebSockets protocol, and is initiated as soon as the frontend page is successfully loaded.
Upon connection, the frontend registers itself to the backend using the REGISTER_VIEWER message and retrieves a new
session ID, server capabilities and user preferences through REGISTER_VIEWER_ACK . It then requests the list of files in
the default directory. If the connection is dropped, the frontend re-registers itself to the server, but passes through the
original session ID. The server should attempt to resume this session, but if not possible, will generate a new session
ID for the client. In addition to the session ID, the frontend can pass through an optional API key, which can be used
to determine basic permissions and user-related settings.

A connection heartbeat is established by the server-initiated ping/pong sequence defined by the WebSocket protocol.
In addition to this, a client-initiated ping/pong sequence is produced by empty messages being sent by the frontend
periodically. The backend keeps track of the time since each connected client last initiated the ping/pong sequence,
and makes timeout decisions based on this value.

When the frontend is intentionally closed, by closing the associated app or web page, the frontend closes the WebSocket
connection gracefully, and the backend can then remove the associated session. When the frontend is closed in error,
or the backend determines that a connection is timed out, the backend should maintain the session for an appropriate
period, so that it can be resumed when the frontend reconnects. The frontend should attempt to reconnect with the same
session ID when a connection is dropped. If the backend responds with a session type set to RESUMED, the frontend
will attempt to resume the session by sending a list of files, along with their associated regions in a RESUME_SESSION
message.

8 Chapter 2. Versioning

https://github.com/facebook/zstd

CARTA Interface Control Document

Initial connection

Client-side Server-side

User Frontend Backend

Loads app/page

Connects to backend (WS)

Connection response (WS)

REGISTER_VIEWER

REGISTER_VIEWER_ACK

Connection info
updated

Reconnection (after dropped connection)

Client-side Server-side

User Frontend Backend

Connects to backend (WS)

Connection response (WS)

REGISTER_VIEWER
(using existing sessionID)

REGISTER_VIEWER_ACK

If the scripting interface is enabled, the backend HTTP server accepts scripting requests, acting as a proxy be-

2.3. Behaviour 9

CARTA Interface Control Document

tween a scripting client, such as a python package, and the frontend. The frontend parses a scripting command
from each SCRIPTING_REQUEST message sent by the backend, executes the required code, and responds with a
SCRIPTING_RESPONSE message, which includes the success state of the command, as well as a possible response
in JSON format. Each incoming scripting request includes a unique ID, which is passed back in the scripting response,
so that the backend can uniquely match scripting requests to their responses.

2.3.2 File browsing

The file browser displays a list of files in the selected directory, along with some basic information on each file (type,
size) and a list of subdirectories. If a file contains multiple HDUs (or equivalent), a list of HDU names is included. If
a file is selected in the file browser, additional information is shown. A specific HDU of a file can be selected. When
a subdirectory is selected, the file list is fetched for that subdirectory. When a file is loaded, the default image view
is requested. A file can be loaded as a raster or contour image (not currently implemented), and can be appended to
the current list of open files, or can replace all open files, in which case the frontend must first close all files using
the CLOSE_FILE message with file_id = -1. Individual open files can be removed from the file list by calling
CLOSE_FILE with an appropriate file_id field.

Change file browser sub-directory

Client-side Server-side

User Frontend Backend

Selects sub-directory

FILE_LIST_REQUEST/
REGION_LIST_REQUEST

Finds file in sub-directory

FILE_LIST_PROGRESS

(Cancels the file/region list)

(STOP_FILE_LIST)

FILE_LIST_RESPONSE/
REGION_LIST_RESPONSE

Displays updated
file browser

10 Chapter 2. Versioning

CARTA Interface Control Document

Fetching file info

Client-side Server-side

User Frontend Backend

Selects file

FILE_INFO_REQUEST

Determines file info
from header

FILE_INFO_RESPONSE

Displays info
for selected file

2.3. Behaviour 11

CARTA Interface Control Document

Opening a file as a new frame (appending)

Client-side Server-side

User Frontend Backend

File load

Loads file
(as new frame)

OPEN_FILE

Loads file

OPEN_FILE_ACK

REGION_HISTOGRAM_DATA

Image view

SET_IMAGE_CHANNELS

RASTER_TILE_DATA

Displays image

12 Chapter 2. Versioning

CARTA Interface Control Document

Opening a file
(replacing open files)

Client-side Server-side

User Frontend Backend

File load

Loads file
(replace existing
frames)

CLOSE_FILE

Removes regions

Closes files and
removes regions

OPEN_FILE

Loads file

OPEN_FILE_ACK

REGION_HISTOGRAM_DATA

Image view

SET_IMAGE_CHANNELS

RASTER_TILE_DATA

Displays image

2.3. Behaviour 13

CARTA Interface Control Document

2.3.3 Data cube navigation

The frontend can change the displayed channel and Stokes parameter by issuing the SET_IMAGE_CHANNELS command.
When an image is opened, the frontend will send a SET_IMAGE_CHANNELS with the first channel and Stokes parameter.
The frontend subscribes to all RASTER_TILE_DATA messages.

Tiled rendering splits the image into individual square tiles (defaulting to 256 pixels in width), and renders the image
progressively as tiles arrive from the backend. This is more efficient when exploring a large image, as it reuses data
when panning and zooming around the image. Images are downsampled by a power of 2.

In addition, contour rendering can be used on files. The contours for an entire channel are generated when the frontend
sends the SET_CONTOUR_PARAMETERS command. The frontend subscribes to all CONTOUR_IMAGE_DATA messages.
Currently, contour renders are automatically updated when the user changes channel or plays an animation. Contours
are delivered in separate chunks by the backend, so that the user can see the contours as they are delivered to the
frontend, and can get an idea of how long the contour fetching will take.

Zooming and panning

The frontend can request specific tiles of an image to be delivered. Tiles are specified using the widely used a tiled web
map convention (commonly used in GIS and online image viewer software). Each tile is defined by three coordinates:
The layer, x and y coordinates. The zeroth layer consists of the entire image, down-sampled until it is stored in a single
tile, with both width and height less than or equal to a chosen tile size (defaulting to 256 pixels, but this may increase in
future to 512 pixels for large format screens). The tile size must be a multiple of four, due to the ZFP algorithm’s block
size. Each subsequent layer doubles in width and height, to the point where the highest layer (N) contains the entire
image in full resolution, split into fixed-size tiles (tiles along the right and top edges of the image will have reduced
width and height respectively).

Tile coordinates (layer, x and y) are encoded into a single 32-bit integer before sending. There are two primary
reasons for this:

• Using a struct as a key in a map on either frontend or backend would be more complicated, and require a custom
hash function. JavaScript Map objects do not support this. Storing tiles within a map-of-maps-of-maps would be
less efficient.

• Encoding and decoding an array of structs in a protocol buffer object would be less efficient in terms of CPU
time and network storage

The encoded integer consists of:

• 12 bits for the X and Y coordinate. This limits the implementation to at most 4096 tiles along either axis. With
a default tile size of 256 pixels, this means images must be smaller than 1.04 million pixels in width and height.

• 7 bits for the layer coordinate. This limits the implementation to 128 layers. However, this limitation is artificial,
since at most 12 layers will be required, given the above limitation of 4096 tiles

• 1 bit left over, because JavaScript bit shifting is done on signed integers, rather than unsigned

Encoding and decoding is a simple and lightweight process using some bit shifting. A single line JavaScript function
to encode is:

(x, y, layer) => (layer << 24) | (y << 12) | x;

When a user zooms or pans, the frontend sends the ADD_REQUIRED_TILES command to the backend. The frontend
may debounce, throttle or delay sending tiles to the backend, in order to optimise delivery and avoid sending stale tiles.
The order of the list of tiles supplied to ADD_REQUIRED_TILES determines the order in which the backend delivers
tiles. If subsequent ADD_REQUIRED_TILES messages arrive while the backend is still delivering tiles, the most recent
tile list is prioritised.

14 Chapter 2. Versioning

https://en.wikipedia.org/wiki/Tiled_web_map
https://en.wikipedia.org/wiki/Tiled_web_map

CARTA Interface Control Document

Another route for optimisation available to the frontend is REMOVE_REQUIRED_TILES, which allows the frontend to
explicitly indicate that certain tiles are no longer required. If any of these tiles are yet to be delivered to the frontend,
the backend can optimise tile delivery by removing them from the queue of titles to be delivered.

Tile data is delivered by the backend using the RASTER_TILE_DATA stream. This allows the backend to send one or
more raster tiles with the same compression format and quality to the frontend. Each time a tile is delivered to the
frontend, the image is re-rendered.

Altering image view

Client-side Server-side

User Frontend Backend

Pans or zooms image

ADD_REQUIRED_TILES

RASTER_TILE_DATA

Displays updated image

RASTER_TILE_DATA

Displays updated image

RASTER_TILE_DATA

Displays updated image

Channel navigation

When changing channels via a SET_IMAGE_CHANNELS message, the frontend includes an initial list of required
tiles. These tiles are then delivered individually by the backend. Unlike the case when zooming and panning,
the frontend will wait for all required tiles to be delivered before displaying an image when switching channels.
When receiving a SET_IMAGE_CHANNELS message, the backend will also send the new channel histogram via the
REGION_HISTOGRAM_DATA stream.

In general, one image view command will correspond to a subsequent image data stream message. However, changing
the image channel will result in a subsequent image data stream message, as well as any relevant updated statistics,
histograms or profile data.

2.3. Behaviour 15

CARTA Interface Control Document

Altering image channel

Client-side Server-side

User Frontend Backend

Changes channel
or Stokes

SET_IMAGE_CHANNELS

Calculates which
analytics need
updates

Calculates
channel histogram

REGION_HISTOGRAM_DATA

RASTER_TILE_DATA

RASTER_TILE_DATA

RASTER_TILE_DATA

Displays updated
image

Calculates
remaining analytics

SPATIAL_PROFILE_DATA

Displays updated
plots

16 Chapter 2. Versioning

CARTA Interface Control Document

Animation

An animation can be played back by issuing the START_ANIMATION command. This command encapsulates all the
different animation stepping and bounds parameters, in order to allow the backend to perform frame calculations and
deliver image data to the front. After the the START_ANIMATION command has been issued, the backend sends re-
quired images and analysis results of the active and spectrally matched images to the frontend at a regular interval.
When the user stops an animation, the frontend sends the STOP_ANIMATION command, which includes information
on the current image’s channels, so that the backend can be sure that the frontend channel state is the same as that
of the backend. If the last sent frame does match the frontend channel state, the backend adjusts channels again. In
order to prevent the backend from sending too many animation frames, some basic flow control is provided through
ANIMATION_FLOW_CONTROL message. This is sent from the frontend to the backend to indicate the latest frame of the
active image received, preventing the backend from queuing up too many frames. The START_ANIMATION command
includes an ADD_REQUIRED_TILES sub-message, specifying the required tiles and compression type to be used in the
animation. The backend includes an animation ID field in START_ANIMATION_ACK in order to allow the frontend to
differentiate between frames of previous animations and the latest animation.

2.3. Behaviour 17

CARTA Interface Control Document

Animation playback

Client-side Server-side

User Frontend Backend

Requests animation
playback

START_ANIMATION

START_ANIMATION_ACK

For each image

Required contours, vectors, analytics...

alt [Visible image]

RASTER_TILE_SYNC

RASTER_TILE_DATA

RASTER_TILE_SYNC

ANIMATION_FLOW_CONTROL (active image)

Displays updated image

For each image

Required contours, vectors, analytics...

alt [Visible image]

RASTER_TILE_SYNC

RASTER_TILE_DATA

RASTER_TILE_SYNC

ANIMATION_FLOW_CONTROL (active image)

Displays updated image

For each image

Required contours, vectors, analytics...

alt [Visible image]

RASTER_TILE_SYNC

RASTER_TILE_DATA

RASTER_TILE_SYNC

ANIMATION_FLOW_CONTROL (active image)

Displays updated image

Stops playback

STOP_ANIMATION

SET_IMAGE_CHANNELS

RASTER_TILE_DATA

RASTER_TILE_DATA

18 Chapter 2. Versioning

CARTA Interface Control Document

Active and visible spectrally matched images are sent as tiled data. For each image, the backend first sends the
RASTER_TILE_SYNC message with end_sync false. Tiled data are then sent with RASTER_TILE_DATA . After all the
tiles are sent, the backend sends the RASTER_TILE_SYNC message again with end_sync true. In order to keep the
image view channel and full image histogram synchronised, REGION_HISTOGRAM_DATA messages are sent to the fron-
tend, containing the channel histogram for the new channel. During animation playback, each animation step will
result in image data stream messages, as well as any relevant analytics updates, including SPATIAL_PROFILE_DATA ,
REGION_STATS_DATA , CONTOUR_IMAGE_DATA , and VECTOR_OVERLAY_TILE_DATA . If zooming or panning occurs
during animation, or if an image becomes visible or invisible in the image view panel, ADD_REQUIRED_TILES mes-
sages of the frames are sent to the backend, updating the requirements. These new requirements are used in the next
frame generated by the backend.

2.3.4 Changing view parameters

Contours must be re-calculated by the server when the contour parameters (levels, mode or smoothness) change. How-
ever, as contour rendering is done on the frontend, any changes to the contour rendering parameters (visibility, opacity,
thickness, colour, line style) do not require any server interaction.

Updating contour parameters

Client-side Server-side

User Frontend Backend

Changes contour
parameters

SET_CONTOUR_PARAMETERS

CONTOUR_IMAGE_DATA

Displays updated image

Changes rendering
parameters

Displays updated image

Similarly for raster images: As all the rendering is done on the frontend, any changes to the raster rendering configu-
ration (colour map, range, scaling type) do not require any interaction between frontend and backend:

2.3. Behaviour 19

CARTA Interface Control Document

Changing colour maps, range or scaling type
(no server interaction required)

Client-side Server-side

User GPU Frontend Backend

Changes parameter

Shader parameters

Render image
(Color mapping,
composition etc)

Display image

Vector overlay rendering requires image data for both the vector angle (normally calculated from polarization angle
PA) and length/intensity (normally calculated from polarized intensity PI). The image data is first downsampled on
the backend using block downsampling with an even block width, and then masked with a threshold value. Adjusting
the block width or threshold value will require the data to be recalculated and streamed by the backend. The backend
streams data tile-by-tile.

20 Chapter 2. Versioning

CARTA Interface Control Document

Updating vector overlay parameters

Client-side Server-side

User Frontend Backend

Changes vector overlay
parameters

SET_VECTOR_OVERLAY_PARAMETERS

Reads required
data from disk

Generates PA/PI tiles

Compresses using ZFP

VECTOR_OVERLAY_TILE_DATA
(progress < 1.0)

Processes tile and
generates vertices

Displays partial
overlay image

VECTOR_OVERLAY_TILE_DATA
(progress < 1.0)

Processes tile and
generates vertices

Displays partial
overlay image

VECTOR_OVERLAY_TILE_DATA
(progress = 1.0)

Processes tile and
generates vertices

Dispalys complete
overlay image

2.3. Behaviour 21

CARTA Interface Control Document

2.3.5 Region selection and statistics

Region creation

Regions can be created, removed and updated. Any profiles or statistics data associated with a region flow from the back-
end to the server whenever an update is required. Updates may be required (a) when a region is created or updated; (b)
when the image channel is explicitly switched to a different channel or Stokes parameter using SET_IMAGE_CHANNELS
or (c) when an animation playback results in the image view being updated implicitly.

In addition, the backend may choose to provide partial region statistics or profile updates if the calculations are time-
intensive. When creating a region, the region_id field of SET_REGION is less than zero: the backend generates the
unique region_id field, and returns it in the acknowledgement message.

22 Chapter 2. Versioning

CARTA Interface Control Document

Creating a region

Client-side Server-side

User Frontend Backend

Draws new region

SET_REGION

SET_REGION_ACK

Displays region
overlay

Begins region
spectral profile
calculation

SPECTRAL_PROFILE_DATA
(partial)

Displays region
spectral profile
(with progress bar)

Continues region
spectral profile
calculation

SPECTRAL_PROFILE_DATA

Displays region
spectral profile

2.3. Behaviour 23

CARTA Interface Control Document

Updating a region

Client-side Server-side

User Frontend Backend

Edits region
control points

SET_REGION

SET_REGION_ACK

Updates region
overlay

Calculates region
spectral profile

SPECTRAL_PROFILE_DATA

Displays region
spectral profile

Cursor updates

As viewing profiles based on the position of the cursor is a very common use case, a separate control message is used
specifically for this purpose, and does not require the definition of any additional region. The cursor-based region has
a region_id field value of zero, and is defined as a point-type region. The X and Y coordinates of the region can only
be updated via the SET_CURSOR command, while the channel and Stokes coordinates are automatically updated by the
backend whenever the image view is changed.

24 Chapter 2. Versioning

CARTA Interface Control Document

Updating cursor information

Client-side Server-side

User Frontend Backend

Moves mouse cursor

SET_CURSOR

Calculates profiles

SPATIAL_PROFILE_DATA

Displays profiles

Continues spectral
profile calculation

SPECTRAL_PROFILE_DATA

Displays profiles

Region requirements

Each region can have analytical data requirements associated. For example, the user may wish to display the Z-profile
of a particular region, while displaying the X- and Y-profiles of the cursor region. Whenever an analytical widget is
added or removed in the frontend, the frontend must update the requirements associated with that region using the
relevant command:

• SET_SPECTRAL_REQUIREMENTS for spectral profiler widgets

• SET_SPATIAL_REQUIREMENTS for spatial profiler widgets

• SET_STATS_REQUIREMENTS for stats info displays

• SET_HISTOGRAM_REQUIREMENTS for histograms plot widgets

After each requirements update, the backend should then assess the new requirements to determine whether any new
or updated analytical data needs to be sent to the frontend. As an example: adding a spectral profile widget on the
frontend and setting its requirements will mean that the region it is associated with now has an additional requirement,
and the frontend requires new data. As such, the backend will calculate the required spectral profile and send it using

2.3. Behaviour 25

CARTA Interface Control Document

SPECTRAL_PROFILE_DATA. However, removing the spectral profile widget on the frontend will now remove that
requirement, but no new SPECTRAL_PROFILE_DATA message is needed from the frontend.

Adding a new profile plot

Client-side Server-side

User Frontend Backend

Adds new profile plot

SET_SPECTRAL_REQUIREMENTS

Calculates profiles

SPECTRAL_PROFILE_DATA

Displays profiles

Removes a profile plot

Client-side Server-side

User Frontend Backend

Removes a profile plot

SET_SPECTRAL_REQUIREMENTS

If a region’s parameters are changed, the backend determines which calculations need to be updated, based on the
region’s requirements set, and any required data is sent to the frontend through a new data stream message:

26 Chapter 2. Versioning

CARTA Interface Control Document

Updating profile plots

Client-side Server-side

User Frontend Backend

Edits region

SET_REGION

Calculates profiles

SPECTRAL_PROFILE_DATA

Displays profiles

When all files are closed, regions associated with that file are removed, both on the frontend and on the backend. When
only a single frame is closed, the regions persist.

Closing a file

Client-side Server-side

User Frontend Backend

Closes file

CLOSE_FILE

Remove regions

Closes file and
removes regions

2.3. Behaviour 27

CARTA Interface Control Document

Per-cube histograms

As users may wish to use a histogram generated from the entire cube to choose their render bounds, the backend needs
to support the calculation of a histogram on a per-cube as well as per-slice basis. A per-cube histogram is requested
through the SET_HISTOGRAM_REQUIREMENTS message, with the region ID set to -2. As per-cube histograms may take
a long time to calculate, there are additional requirements over and above per-slice histograms.

The backend should deliver results from the histogram calculation at regular intervals. As the histogram. As the his-
togram calculation consists of a large number of separable calculations (reading through individual slices to determine
min/max, reading through individual slices to fill the histogram bins), the backend can split the calculation up into
smaller tasks, and deliver cumulative results to the frontend.

Calculating Per-cube histogram

Client-side Server-side

User Frontend Backend

Selects per-cube histogram

Warns user of possible delay

Confirms selection

SET_HISTOGRAM_REQUIREMENTS

Begins calculation

REGION_HISTOGRAM_DATA (partial)

Displays progress indicator

Continues calculation

REGION_HISTOGRAM_DATA (partial)

Displays progress indicator

Completes calculation

REGION_HISTOGRAM_DATA (complete)

Displays histogram

The backend should be able to cancel the histogram calculation when receiving a specific message from the frontend.
By sending a second SET_HISTOGRAM_REQUIREMENTS message to the backend, with the region ID set to -2 and an
empty histogram list, the frontend can indicate to the backend that the per-cube histogram is no longer required, and
the backend can cancel the calculation.

28 Chapter 2. Versioning

CARTA Interface Control Document

Calculating Per-cube histogram

Client-side Server-side

User Frontend Backend

Selects per-cube histogram

Warns user of possible delay

Confirms selection

SET_HISTOGRAM_REQUIREMENTS

Begins calculation

REGION_HISTOGRAM_DATA (partial)

Displays progress indicator

Continues calculation

Cancels calculataion

SET_HISTOGRAM_REQUIREMENTS
(with empty histogram list)

Cancels calculation

2.3.6 Data streaming

While some data flows can be described by a simple request/response approach, such as retrieving file lists or file
information, other data flows require an asynchronous data stream approach. This need arises from situations where a
single state change command corresponds to more than one response from the backend. For example, changing image
channel would require each spatial profile associated with the active image channel to be updated, possibly resulting in
more than one SPATIAL_PROFILE_DATA messages. Moving a region would require updating any analytics associated
with the region. It is the backend’s responsibility to correctly determine which analytic data needs to be updated
whenever a control message is sent. It is essential that the backend only recalculates and sends data when needed.
In order to do this, the backend must keep track of any updates to region requirements, and use these requirements
to determine whether updates are needed. Region requirements will reflect the current frontend UI configuration.
Changes to the frontend UI configuration (such as changing between “average” and “max” on a spectral profile widget)
will result in new region requirements being sent to the backend, which will then be processed, resulting in new data
being sent to the frontend when required.

Some examples of possible resultant data streams for control messages are given below:

• SET_IMAGE_CHANNELS: Changing either the channel or the Stokes parameter would require new image data to
be sent, for both raster and contour images. Changing from one channel to another in the same Stokes cube could
result in histograms, spatial profiles or region stats to require updating. Changing to a new stokes cube could
also require spectral profiles to be updated. These updates will depend on the defined regions and defined region
requirements.

2.3. Behaviour 29

CARTA Interface Control Document

• START_ANIMATION: Starting an animation will require new image data for each frame. In addition, since the
animation playback may be across file, Stokes or channel parameters, the same data streams as those arising from
SET_IMAGE_CHANNELS can occur.

• SET_CURSOR : Updating the cursor position is a special case of updating a region. As the cursor position is a
point region, only spectral data and spatial data can require an update.

• SET_REGION: Creating a region will not result in any data streams, as the region’s requirements will be empty
by default. However, updating a regions parameters (other than region name) could result in spatial profiles (for
open regions), spectral profiles, region stats and histograms (for closed and point regions) to be updated.

• SET_STATS_REQUIREMENTS: Updating stats requirements for a region can result in region stats data being up-
dated.

• SET_HISTOGRAM_REQUIREMENTS: Updating histogram requirements for a region (either by updating the channel
required for the histogram or by changing the histogram bin number) can result in histogram data being updated.

• SET_SPATIAL_REQUIREMENTS: Updating spatial profile requirements for a region can result in spatial profile
data being updated.

• SET_SPECTRAL_REQUIREMENTS: Updating spectral profile requirements for a region (either by changing the
coordinate required, such as “Qz” or “Uz”, or by changing the statistic type used to generate the profile) can
result in spectral profile data being updated.

• SET_CONTOUR_PARAMETERS: Updating contour parameters for a file will result in new contour image data being
required.

2.3.7 User preferences

If the backend supports the USER_PREFERENCES server feature flag, the frontend will expect all the user’s prefer-
ences (default settings, color maps, interaction preferences and others) to be included in the REGISTER_VIEWER_ACK
message. Changes to the user preferences can be made by the frontend through the SET_USER_PREFERENCES control
message. Each preference to be updated, along with the updated value, is stored as a map. User preference entries can
be removed from the server by sending a SET_USER_PREFERENCESmessage with a map of preference keys with empty
values.

If the backend supports the USER_LAYOUTS server feature flag, the frontend will expect all the user’s custom UI
layouts to be included in the REGISTER_VIEWER_ACK message. Changes to individual layouts (adding, updating or
removing) are updated through the SET_USER_LAYOUT control message.

2.3.8 Resume the session

The basic idea is that, when the frontend reconnects to the backend (with REGISTER_VIEWER), it would also send some
state information, such as:

• list of open files, along with their IDs and the current channels and stokes

• list of regions for each file, along with all their properties

Users can choose whether to resume the session while reconnected. If yes, then the backend would then reconstruct
the session based on the frontend’s message, by opening files again, changing to the appropriate channels, and so on,
and then adding the regions and then set requirements.

There are two use cases for resuming with an existing session ID, and a third where resume is not possible.

1. Backend is restarted, frontend connects, frontend sends state information.

1. Frontend sends REGISTER_VIEWER with session_id > 0.

30 Chapter 2. Versioning

CARTA Interface Control Document

2. Restarted backend has no session_ids, REGISTER_VIEWER_ACK sets session_type=RESUMED. Backend
creates new Session with given session_id (On Connect).

3. Frontend sends state to backend, i.e., sends RESUME_SESSION message with state information, backend
responds with RESUME_SESSION_ACK .

4. Backend sets state in newly-created Session.

2. Network connection drops, frontend reconnects to backend with existing session id.

1. While the network connection drops. It seems the uWebsocket has a default timeout setting for 15,000 ms
(need to verify). For the new version of uWebsocket, we can set the timeout via the variable “.idleTimeout”.
On Disconnect is called after the timeout and then backend deletes Session.

2. Frontend sends REGISTER_VIEWER with session_id > 0.

3. Backend has session_id, REGISTER_VIEWER_ACK sets session_type=RESUMED. Frontend sends state to
backend with RESUME_SESSION, and backend responses with RESUME_SESSION_ACK .

4. Backend sets state in existing Session, requirements trigger sending data streams (possibly cached).

3. Frontend is restarted, has no existing session id so cannot resume even though backend continues.

1. Frontend sends REGISTER_VIEWER with session_id = 0.

2. Backend creates a new Session, REGISTER_VIEWER_ACK sets session_type=NEW.

3. The Session will be deleted immediately while the frontend is restarted.

2.3.9 Catalog overlay

Sequence Diagrams

Catalog file list

2.3. Behaviour 31

CARTA Interface Control Document

Changing Catalog File browser sub-directory

Client-side Server-side

User Frontend Backend

Selects sub-directory

CATALOG_FILE_LIST_REQUEST

Finds file in
sub-directory

CATALOG_LIST_PROGRESS

(Cancels the Catalog file list)

(STOP_CATALOG_LIST)

CATALOG_FILE_LIST_RESPONSE

Displays updated
file browser

Catalog file info

Fetching Catalog File Info

Client-side Server-side

User Frontend Backend

Selects file

CATALOG_FILE_INFO_REQUEST

Analyzes XML file

CATALOG_FILE_INFO_RESPONSE

Displays catalog info
for user selected file

32 Chapter 2. Versioning

CARTA Interface Control Document

Opening catalog file

Opening Catalog File

Client-side Server-side

User Frontend Backend

File Load

alt [Loads file]

Loads catalog file

OPEN_CATALOG_FILE

Analyzes XML file

OPEN_CATALOG_FILE_AFK

Loads preview data
into catalog widget

Opens catalog widget
with selected file

[can not catalog open file]

Loads catalog file

OPEN_CATALOG_FILE

Analyzes XML file

OPEN_CATALOG_FILE_AFK

Displays error message

Catalog file data stream

2.3. Behaviour 33

CARTA Interface Control Document

Catalog data stream

Client-side Server-side

User Frontend Backend

Catalog Widget

Applies filters

CATALOG_FILTER_REQUEST

Filters catalog data

CATALOG_FILTER_RESPONSE (preview data)

updates catalog table
view with preview data

Applies sort

CATALOG_FILTER_REQUEST

sorts catalog data

CATALOG_FILTER_RESPONSE (preview data)

updates catalog table
view with preview data

addes displayed column

CATALOG_FILTER_REQUEST

addes column data

CATALOG_FILTER_RESPONSE (preview data)

updates catalog table
view with preview data

requests more data
(scroll in table view)

CATALOG_FILTER_REQUEST

addes more data

CATALOG_FILTER_RESPONSE (request data)

updates catalog table

loads all catalog
data into image
viewer or subplots

CATALOG_FILTER_REQUEST

begins calculation

CATALOG_FILTER_RESPONSE (partial)

updates catalog table,
image viewer or subplots

continues calculation

CATALOG_FILTER_RESPONSE (partial)

updates catalog table,
image viewer or subplots

completes calculation

CATALOG_FILTER_RESPONSE (complete)

updates catalog table,
image viewer or subplots

34 Chapter 2. Versioning

CARTA Interface Control Document

Closing catalog file

Closing Catalog File

Client-side Server-side

User Frontend Backend

Closes catalog file

CATALOG_CLOSE_FILE

Closes file

Removes catalog
table view,
image view and
subplots view

Displays next
avaliable catalog file
which associated with
current actived frame

2.3.10 Moments generator

The moment generator should allow users to generate moment images from a cube interactively with the GUI. The
interactivity should happen with a spectral line profile plot as usually we need information from spectral line profiles
(line spectral/intensity distributions) to decide the control parameters of the moment generator. This could happen with
the existing spectral profile widget, or, with a dedicated moment generator widget/dialogue with a spectral line profile
plot.

CARTA should provide the following kinds of moments (sensible name in bold) as supported by CASA:

• moments = -1 - mean value of the spectrum

• moments = 0 - integrated value of the spectrum

• moments = 1 - intensity weighted coordinate; traditionally used to get “velocity fields”

• Moments = 2 - intensity weighted dispersion of the coordinate; traditionally used to get “velocity dispersion”

• moments = 3 - median value of the spectrum

2.3. Behaviour 35

CARTA Interface Control Document

• moments = 4 - median coordinate

• moments = 5 - standard deviation about the mean of the spectrum

• moments = 6 - root mean square of the spectrum

• moments = 7 - absolute mean deviation of the spectrum

• moments = 8 - maximum value of the spectrum

• moments = 9 - coordinate of the maximum value of the spectrum

• moments = 10 - minimum value of the spectrum

• moments = 11 - coordinate of the minimum value of the spectrum

The newly generated moment images (multiple moments can be generated at the same time) should be loaded and
appended (and match spatially) in CARTA. CARTA should also support the capability to export the images as files in
the following formats:

• CASA image format

• FITS image format

• HDF5-IDIA schema image format (TBD; post v1.4)

We create temporary moment images in the backend. Then if users want to keep the results, the “save image” option
in the file menu should be used where filename and file type can be defined. If users don’t do the “save image” step,
those images should be deleted when the session is closed.

The interactivity with the spectral profile widget should include the following:

1. Text fields to specify spectral ranges to generate moments. This includes:

• Channel

• Velocity

• Frequency

• Stokes

These text fields (except Stokes) are linked to the selection via the cursor directly on the spectral plot. Users can drag
on the spectral plot to define a range in the spectral axis.

2. Text fields to define masks for the intensity values. Users can define a range of intensity values to be included
in the moment calculations. For example, usually we will apply a threshold (e.g., >= 5-sigma) to the cube to
compute moment 1 and moment 2. These text fields are linked to the selection via the cursor directly on the
spectral plot. Users can drag on the spectral plot to define thresholds for moments.

As image cubes might be extremely large, the moment generator in CARTA should support an accurate progress bar
(CASA provides “multiple” 0-100% progress bars which is misleading and does not provide useful information) and
most importantly, the ability of cancellation.

Sequence diagrams for setting image moments and stopping moments calculation are shown below:

36 Chapter 2. Versioning

CARTA Interface Control Document

Set image moments

Client-side Server-side

User

User

Frontend

Frontend

Backend

Backend

Moments calculation

Set image moments

MOMENT_REQUEST

MOMENT_PROGRESS

Update progress bar

OPEN_FILE

OPEN_FILE_ACK

REGION_HISTOGRAM_DATA

MOMENT_RESPONSE

Image view(s)

SET_IMAGE_CHANNELS

RASTER_TILE_DATA

Display image(s)

2.3. Behaviour 37

CARTA Interface Control Document

Stop image moments calculation

Client-side Server-side

User

User

Frontend

Frontend

Backend

Backend

Moments calculation

Set image moments

MOMENT_REQUEST

MOMENT_PROGRESS

Update progress bar

Cancel image moments

STOP_MOMENT_CALC

Interrupt calculation

MOMENT_RESPONSE

2.3.11 Image fitting

Users can fit multiple 2D Gaussian components to the selected file with the image fitting widget. Frontend sends
FITTING_REQUEST with file_id, region_id, initial_values, and other settings. Backend fits the current chan-
nel and polarization of the file. For each fitting iteration, backend sends back FITTING_PROGRESS to update the
progress. When the fitting is complete, backend responds with FITTING_RESPONSE. Users can cancel the requested
fitting with the progress widget. Frontend sends STOP_FITTING , and backend sents back FITTING_RESPONSE after
the fitting is canceled. The sequence diagram is shown below:

38 Chapter 2. Versioning

CARTA Interface Control Document

Image Fitting

Client-side Server-side

User Frontend Backend

Set fitting parameters

FITTING_REQUEST

Setup 2D Gaussian fitting

loop

One fitting iteration

FITTING_PROGRESS

(Cancels the requested fitting)

(STOP_FITTING)

FITTING_RESPONSE

Displays fitting results

2.4 Layer descriptions

2.4.1 Application Layer

Interface communication messages fall into three overall categories:

• Control messages (along with any associated acknowledgement responses), which are used to modify the state
of the backend from the frontend. Example of this would be starting a new session, moving the cursor or updating
region parameters. Each message from the frontend correspond to zero or one acknowledgement response from
the backend. Message names for this category follow the naming convention MESSAGE_NAME and MES-
SAGE_NAME_ACK

• Request messages (along with the required responses), which are used to explicitly request information from
the backend without explicitly changing the backend state. Examples of this would be requesting a file list. The
frontend will wait for a response for each request of this type, and callbacks or promises will be used to execute
code based on the returned response. As each request needs to be mapped to response, messages in this cate-
gory must include a unique requestID entry. Each message from the frontend in this category corresponds to
exactly one response from the backend. Message names for this category follow the naming convention MES-
SAGE_NAME_REQUEST and MESSAGE_NAME_RESPONSE

• Data flow messages, which flow from the backend to the frontend without an originating front end request.
These messages are used for pushing updated data from the backend to the frontend. Examples of this type

2.4. Layer descriptions 39

CARTA Interface Control Document

would be image data, region statistics, profile data and cursor values. The appropriate mechanism for dealing
with these messages in the frontend is a observable/subscription-based approach. As there is no request/response
combination for messages in this category, there is no prescribed message naming convention.

Implementation note: The backend should implement a command queue for control messages, so that high priority
messages are executed first, and cause the backend to disregard any queued-up control messages that are no longer
relevant. As an example: moving the cursor across the image will result in a large number of control messages being
sent to the backend. Each of these control messages could result in a data flow message with new cursor and profile
information, which may take some time to calculate. If a file is closed by the frontend, the backend no longer needs to
process any remaining cursor messages relating to this file, and those messages should be removed from the queue.

Message definitions shown in blue are used for frontend ->backend communication. Message definitions shown
in red are used for backend->frontend communication.

2.4.2 Presentation layer

Messages are encoded using the Protocol Buffers message format, which encodes into a binary format. Each message
is prepended by a 64-bit structure, consisting of:

• 16-bit unsigned integer, used to identify the message type, specified by EventType

• 16-bit unsigned integer, used to determine the ICD version

• 32-bit unsigned integer, used to uniquely identify requests and corresponding responses. In the case of messages
with no corresponding request, such as data stream messages, this integer will be ignored.

Using an 8-byte header prevents byte alignment issues from cropping up. End points decode the message by splitting
it into two sections: the 8-byte identifier header and the payload. The identifier header is used to determine which
Protocol Buffer definition should be used to decode the payload, and which request corresponds to which response.
The ICD version integer (shown at the top of this document) should match the major version of this document (also
shown at the top of this document). Any changes to the protocol buffer definitions that would render older backend or
frontend implementations incompatible should result in incrementing the ICD version number, and a corresponding
change to this document’s version number.

Implementation note: The protocol buffer style guide [6] expects snake_case for field names. The protobuf c++
compiler leaves names in snake_case, while the javascript compiler leaves field names in camelCase. So a field accessed
via msg.min_val() in c++ would be accessed by msg.minVal in javascript.

2.4.3 Session Layer

Sessions will utilise the the WebSocket protocol, as the frontend will be browser-based. Initial session establishment
will occur using HTTP, and then be upgraded to WebSocket. Session management will be handled by a session ID
being passed from backend to frontend on initial connection. If the frontend is disconnected without closing the session
explicitly, the session ID can be passed to the backend upon reconnection to resume the session, although this is not
currently supported.

40 Chapter 2. Versioning

https://developers.google.com/protocol-buffers/docs/style

CARTA Interface Control Document

2.4.4 Transport Layer

The interface will use TCP to communicate. Network layer and below will be dependent on the server/client connection
and need not be detailed.

2.5 Protocol buffer reference

2.5.1 Messages

AddRequiredTiles

Source file: control/tiles.proto

ADD_REQUIRED_TILES Provides a list of tiles that are required for the specified file

Field Type Label Description
file_id sfixed32 The file ID that the view corresponds to
tiles sfixed32 repeated The list of tiles required, in encoded coordi-

nate
compression_type CompressionType The compression algorithm used
compres-
sion_quality

float Compression quality switch

AnimationFlowControl

Source file: control/animation.proto

ANIMATION_FLOW_CONTROL Used for informing the backend of which frames have been received

Field Type Label Description
file_id sfixed32
received_frame AnimationFrame The latest flow control frame received
animation_id sfixed32 The animation ID that the flow control mes-

sage belongs to
timestamp sfixed64 Timestamp at which the frame was received

CatalogFileInfoRequest

Source file: request/catalog_file_info.proto

Field Type Label Description
directory string
name string

2.5. Protocol buffer reference 41

https://github.com/CARTAvis/carta-protobuf/blob/dev/control/tiles.proto
https://github.com/CARTAvis/carta-protobuf/blob/dev/control/animation.proto
https://github.com/CARTAvis/carta-protobuf/blob/dev/request/catalog_file_info.proto

CARTA Interface Control Document

CatalogFileInfoResponse

Source file: request/catalog_file_info.proto

Field Type Label Description
success bool
message string
file_info CatalogFileInfo
headers CatalogHeader repeated

CatalogFilterRequest

Source file: stream/catalog_filter.proto

Field Type Label Description
file_id sfixed32
column_indices int32 repeated
filter_configs FilterConfig repeated
subset_data_size sfixed32
subset_start_index sfixed32
image_bounds CatalogImageBounds
image_file_id sfixed32
region_id sfixed32
sort_column string
sorting_type SortingType

CatalogFilterResponse

Source file: stream/catalog_filter.proto

Field Type Label Description
file_id sfixed32
image_file_id sfixed32
region_id sfixed32
columns map<key:

fixed32, value:
ColumnData>

repeated

subset_data_size sfixed32
subset_end_index sfixed32
progress float
filter_data_size sfixed32
request_end_index sfixed32

42 Chapter 2. Versioning

https://github.com/CARTAvis/carta-protobuf/blob/dev/request/catalog_file_info.proto
https://github.com/CARTAvis/carta-protobuf/blob/dev/stream/catalog_filter.proto
https://github.com/CARTAvis/carta-protobuf/blob/dev/stream/catalog_filter.proto

CARTA Interface Control Document

CatalogListRequest

Source file: request/catalog_list.proto

Field Type Label Description
directory string
filter_mode FileListFilterMode Filter mode to use when showing the file list

CatalogListResponse

Source file: request/catalog_list.proto

Field Type Label Description
success bool
message string
directory string
parent string
files CatalogFileInfo repeated
subdirectories DirectoryInfo repeated
cancel bool

CloseCatalogFile

Source file: control/open_catalog_file.proto

Field Type Label Description
file_id sfixed32

CloseFile

Source file: control/close_file.proto

CLOSE_FILE: Instructs the backend to close a file with a given file ID

Field Type Label Description
file_id sfixed32 Which “file” slot to close

ClosePvPreview

Source file: control/stop_pv_calc.proto

Field Type Label Description
preview_id sfixed32 Close the PV preview for the preview viewer

id

2.5. Protocol buffer reference 43

https://github.com/CARTAvis/carta-protobuf/blob/dev/request/catalog_list.proto
https://github.com/CARTAvis/carta-protobuf/blob/dev/request/catalog_list.proto
https://github.com/CARTAvis/carta-protobuf/blob/dev/control/open_catalog_file.proto
https://github.com/CARTAvis/carta-protobuf/blob/dev/control/close_file.proto
https://github.com/CARTAvis/carta-protobuf/blob/dev/control/stop_pv_calc.proto

CARTA Interface Control Document

ConcatStokesFiles

Source file: control/concat_stokes_files.proto

CONCAT_STOKES_FILES: Requests to concatenate individual stokes images as one and open it. Backend responds
with CONCAT_STOKES_FILES_ACK

Field Type Label Description
stokes_files StokesFile repeated Stokes files to be concatenated
file_id sfixed32 File ID for the concatenate image
render_mode RenderMode The render mode to use. Additional modes

will be added in subsequent versions.

ConcatStokesFilesAck

Source file: control/concat_stokes_files.proto

Field Type Label Description
success bool Concatenation is successful or not
message string Error message if not successful
open_file_ack OpenFileAck Open file acknowledgement for the concate-

nate file

ContourImageData

Source file: stream/contour_image.proto

CONTOUR_IMAGE_DATA: Data for an image rendered in contour mode.

Field Type Label Description
file_id sfixed32 The file ID that the contour image corre-

sponds to
reference_file_id fixed32 The file ID of the reference image that the

contour vertices are mapped to
image_bounds ImageBounds The bounding box in the XY plane corre-

sponding to the image data in pixel coordi-
nates

channel sfixed32 The image channel used to generate the con-
tours

stokes sfixed32 The image stokes parameter used to generate
the contours

contour_sets ContourSet repeated Each contour set consists of the contour level
value, as well as a list of coordinates. The
start_indices list is used to determine how to
subdivide the coordinates list into separate
poly-lines when rendering.

progress double Progress of the contour sets being sent. If
this is zero, the message is assumed to con-
tain the entire contour sets

44 Chapter 2. Versioning

https://github.com/CARTAvis/carta-protobuf/blob/dev/control/concat_stokes_files.proto
https://github.com/CARTAvis/carta-protobuf/blob/dev/control/concat_stokes_files.proto
https://github.com/CARTAvis/carta-protobuf/blob/dev/stream/contour_image.proto

CARTA Interface Control Document

ContourSet

Source file: stream/contour_image.proto

Field Type Label Description
level double
decimation_factor int32
raw_coordinates bytes
raw_start_indices bytes
uncom-
pressed_coordinates_size

int32

ErrorData

Source file: stream/error.proto

ERROR_DATA: Stream of error/warning/info data. This stream is used to present the frontend with additional infor-
mation on the state of the backend, and is not used in place of returning success=false on requests or commands.

Field Type Label Description
severity ErrorSeverity The severity of the error. Critical errors are

reserved for errors that would normally re-
quire the user to restart the program or reload
the page

tags string repeated A list of strings describing the error type,
that the frontend can interpret and react to.
For example, “file_io” or “memory”.

message string The error message
data string Accompanying error data. For example, if

an error has the “file_io” tag, the frontend
would expect the data field to contain the file
ID of the offending file.

ExportRegion

Source file: control/export_region.proto

EXPORT_REGION: Requests exporting the specified regions to a file on the server. If directory and file are blank,
return file contents for export on client. Backend responds with EXPORT_REGION_ACK

Field Type Label Description
type FileType Required file type
coord_type CoordinateType Required coordinate type pixel/world
file_id sfixed32 File id for the coordinate system to use
region_styles map<key:

sfixed32, value:
RegionStyle>

repeated Region ids and style params to export

directory string Optional directory name of server file
file string Optional file name of server file

2.5. Protocol buffer reference 45

https://github.com/CARTAvis/carta-protobuf/blob/dev/stream/contour_image.proto
https://github.com/CARTAvis/carta-protobuf/blob/dev/stream/error.proto
https://github.com/CARTAvis/carta-protobuf/blob/dev/control/export_region.proto

CARTA Interface Control Document

ExportRegionAck

Source file: control/export_region.proto

EXPORT_REGION_ACK Response for EXPORT_REGION to indicate success and file contents if on client.

Field Type Label Description
success bool Defines whether EXPORT_REGION was suc-

cessful
message string Error message (if applicable)
contents string repeated File contents for client export (one line per

string)

FileInfoRequest

Source file: request/file_info.proto

FILE_INFO_REQUEST: Requests the file info for a specific file. Backend responds with FILE_INFO_RESPONSE

Field Type Label Description
directory string Required directory name
file string Required file name
hdu string Required HDU name (if applicable). If left

empty, the first HDU is selected
support_aips_beam bool Defines whether to support AIPS beam in

FITS history headers

FileInfoResponse

Source file: request/file_info.proto

FILE_INFO_RESPONSE Response for FILE_INFO_REQUEST. Gives information on the requested file

Field Type Label Description
success bool Defines whether the FILE_INFO_REQUEST

was successful
message string Error message (if applicable)
file_info FileInfo Basic file info (type, size)
file_info_extended map<key:

string, value:
FileInfoExtended>

repeated Extended file info (WCS, header info)

46 Chapter 2. Versioning

https://github.com/CARTAvis/carta-protobuf/blob/dev/control/export_region.proto
https://github.com/CARTAvis/carta-protobuf/blob/dev/request/file_info.proto
https://github.com/CARTAvis/carta-protobuf/blob/dev/request/file_info.proto

CARTA Interface Control Document

FileListRequest

Source file: request/file_list.proto

FILE_LIST_REQUEST: Requests the list of available files for a given directory. Backend responds with
FILE_LIST_RESPONSE

Field Type Label Description
directory string Required directory name
filter_mode FileListFilterMode Filter mode to use when showing the file list

FileListResponse

Source file: request/file_list.proto

FILE_LIST_RESPONSE Response for FILE_LIST_REQUEST. Gives a list of available files (and their types), as well
as subdirectories

Field Type Label Description
success bool Defines whether the FILE_LIST_REQUEST

was successful
message string Error message (if applicable)
directory string Directory of listing
parent string Directory parent (null/empty if top-level)
files FileInfo repeated List of available image files, with file type

information and size information.
subdirectories DirectoryInfo repeated List of available subdirectories, with number

of items and modified date
cancel bool

FittingProgress

Source file: request/fitting_request.proto

FITTING_PROGRESS: Updates the progress of the requested fitting.

Field Type Label Description
file_id sfixed32 File ID of the image to be fit
progress float Progess of the fitting procedure, ranging

from 0 to 1

FittingRequest

Source file: request/fitting_request.proto

FITTING_REQUEST: Requests 2D Gaussian image fitting with given initial values. Backend responds with
FITTING_RESPONSE

2.5. Protocol buffer reference 47

https://github.com/CARTAvis/carta-protobuf/blob/dev/request/file_list.proto
https://github.com/CARTAvis/carta-protobuf/blob/dev/request/file_list.proto
https://github.com/CARTAvis/carta-protobuf/blob/dev/request/fitting_request.proto
https://github.com/CARTAvis/carta-protobuf/blob/dev/request/fitting_request.proto

CARTA Interface Control Document

Field Type Label Description
file_id sfixed32 File ID of the image to be fit
initial_values GaussianComponent repeated Initial values for 2D Gaussian fitting
fixed_params bool repeated Whether each parameter (in the order of cen-

ter, amplitude, FWHM, and p.a., and with
background offset at the end) should be fixed
when fitting

region_id sfixed32 Region ID. Apply field of view if the id is 0;
apply the entire image if the id is -1

fov_info RegionInfo Field of view parameters
cre-
ate_model_image

bool Whether to create a model image of the fit-
ting result

cre-
ate_residual_image

bool Whether to create a residual image of the fit-
ting result

offset double Background level offset
solver FittingSolverType Solver of the linear least squares system in

the fitting

FittingResponse

Source file: request/fitting_request.proto

FITTING_RESPONSE: Response for FITTING_REQUEST. Gives results and log of 2D Gaussian image fitting.

Field Type Label Description
success bool Defines whether FITTING_REQUEST was

successful
message string Error message (if applicable)
result_values GaussianComponent repeated Fitting result: values of the fitted parameters
result_errors GaussianComponent repeated Fitting result: errors of the fitted parameters
log string Fitting log
model_image OpenFileAck Fitting result: model image
residual_image OpenFileAck Fitting result: residual image
offset_value double Fitting result: background level offset
offset_error double Fitting result: error of background level off-

set
inte-
grated_flux_values

double repeated Fitting result: values of integrated flux of
each component

inte-
grated_flux_errors

double repeated Fitting result: errors of integrated flux of
each component

ImageProperties

Source file: control/resume_session.proto

48 Chapter 2. Versioning

https://github.com/CARTAvis/carta-protobuf/blob/dev/request/fitting_request.proto
https://github.com/CARTAvis/carta-protobuf/blob/dev/control/resume_session.proto

CARTA Interface Control Document

Field Type Label Description
directory string
file string
lel_expr bool
hdu string
file_id sfixed32
render_mode RenderMode
channel sfixed32
stokes sfixed32
regions map<key:

sfixed32, value:
RegionInfo>

repeated

contour_settings SetContourParameters
stokes_files StokesFile repeated
support_aips_beam bool

ImportRegion

Source file: control/import_region.proto

IMPORT_REGION: Requests the opening and applying of a specific region file. Backend responds with
IMPORT_REGION_ACK

Field Type Label Description
group_id sfixed32 Required WCS group id (may be a single file

id)
type FileType Required file type
directory string Optional directory name of server file
file string Optional file name of server file
contents string repeated Optional file contents of client file (1 line per

string)

ImportRegionAck

Source file: control/import_region.proto

IMPORT_REGION_ACK Response for IMPORT_REGION. Also supplies region properties

Field Type Label Description
success bool Defines whether IMPORT_REGION was suc-

cessful
message string Error message (if applicable)
regions map<key:

sfixed32, value:
RegionInfo>

repeated Map region id to parameters

region_styles map<key:
sfixed32, value:
RegionStyle>

repeated Map region id to style parameters

2.5. Protocol buffer reference 49

https://github.com/CARTAvis/carta-protobuf/blob/dev/control/import_region.proto
https://github.com/CARTAvis/carta-protobuf/blob/dev/control/import_region.proto

CARTA Interface Control Document

MomentProgress

Source file: request/moment_request.proto

Field Type Label Description
file_id sfixed32
progress float

MomentRequest

Source file: request/moment_request.proto

Field Type Label Description
file_id sfixed32
moments Moment repeated
axis MomentAxis
region_id sfixed32
spectral_range IntBounds
mask MomentMask
pixel_range FloatBounds
keep bool

MomentResponse

Source file: request/moment_request.proto

Field Type Label Description
success bool
message string
open_file_acks OpenFileAck repeated
cancel bool

OpenCatalogFile

Source file: control/open_catalog_file.proto

Field Type Label Description
directory string
name string
file_id sfixed32
preview_data_size sfixed32

50 Chapter 2. Versioning

https://github.com/CARTAvis/carta-protobuf/blob/dev/request/moment_request.proto
https://github.com/CARTAvis/carta-protobuf/blob/dev/request/moment_request.proto
https://github.com/CARTAvis/carta-protobuf/blob/dev/request/moment_request.proto
https://github.com/CARTAvis/carta-protobuf/blob/dev/control/open_catalog_file.proto

CARTA Interface Control Document

OpenCatalogFileAck

Source file: control/open_catalog_file.proto

Field Type Label Description
success bool
message string
file_id sfixed32
file_info CatalogFileInfo
data_size sfixed32
headers CatalogHeader repeated
preview_data map<key:

fixed32, value:
ColumnData>

repeated

OpenFile

Source file: control/open_file.proto

OPEN_FILE: Requests the opening of a specific file. Backend responds with OPEN_FILE_ACK

Field Type Label Description
directory string Required directory name
file string File name or LEL expression
hdu string Which HDU to load (if applicable). If left

blank, the first HDU will be used
file_id sfixed32 Which “file” slot to load the file into (when

viewing multiple files)
render_mode RenderMode The render mode to use. Additional modes

will be added in subsequent versions.
lel_expr bool Defines whether file is LEL expression
support_aips_beam bool Defines whether to support AIPS beam in

FITS history headers

OpenFileAck

Source file: control/open_file.proto

OPEN_FILE_ACK Response for OPEN_FILE. Also supplies file information

Field Type Label Description
success bool Defines whether OPEN_FILE was successful
file_id sfixed32 Which file slot the file was loaded into (when

viewing multiple files)
message string Error message (if applicable)
file_info FileInfo Basic file info (type, size)
file_info_extended FileInfoExtended Extended file info (WCS, header info)
file_feature_flags fixed32 Optional bitflags specifying feature flags of

the file being opened.
beam_table Beam repeated Beam table for multiple-beam images

2.5. Protocol buffer reference 51

https://github.com/CARTAvis/carta-protobuf/blob/dev/control/open_catalog_file.proto
https://github.com/CARTAvis/carta-protobuf/blob/dev/control/open_file.proto
https://github.com/CARTAvis/carta-protobuf/blob/dev/control/open_file.proto

CARTA Interface Control Document

PvPreviewData

Source file: stream/pv_preview.proto

Data stream for PV preview image

Field Type Label Description
preview_id sfixed32 Preview ID for the PV preview viewer
image_info FileInfoExtended Image extended file info
image_data bytes Image data. For uncompressed data, this is

converted into FP32, while for compressed
data, this is passed to the compression li-
brary for decompression.

nan_encodings bytes Run-length encodings of NaN values used to
restore the NaN values after decompression.

width sfixed32 Dimensions of data
height sfixed32
compression_type CompressionType The compression algorithm used
compres-
sion_quality

float Compression quality switch

histogram_bounds FloatBounds Histogram min/max, for rendering
histogram Histogram Histogram, to tune rendering

PvProgress

Source file: request/pv_request.proto

Field Type Label Description
file_id sfixed32 File ID of the source image for the PV gen-

erator
preview_id sfixed32 Preview ID of the PV preview viewer
progress float Progress indicator, ranging from 0 to 1

PvRequest

Source file: request/pv_request.proto

Field Type Label Description
file_id sfixed32 File ID of the source image
region_id sfixed32 Region ID of the PV cut in the source image
width sfixed32 Averaging width along PV cut
spectral_range IntBounds Range of channels to be used in velocity axis
reverse bool Flag whether to generate [Spatial, Spectral]

image or reverse
keep bool Flag whether to keep or replace previously-

generated images
preview_settings PvPreviewSettings Parameters for preview mode

52 Chapter 2. Versioning

https://github.com/CARTAvis/carta-protobuf/blob/dev/stream/pv_preview.proto
https://github.com/CARTAvis/carta-protobuf/blob/dev/request/pv_request.proto
https://github.com/CARTAvis/carta-protobuf/blob/dev/request/pv_request.proto

CARTA Interface Control Document

PvResponse

Source file: request/pv_request.proto

Field Type Label Description
success bool Defines whether PV_REQUEST was success-

ful
message string Error message (if applicable)
open_file_ack OpenFileAck PV generator result: generated PV image
preview_data PvPreviewData PV preview result: generated PV image
cancel bool Defines whether PV_REQUEST was canceled

RasterTileData

Source file: stream/raster_tile.proto

Field Type Label Description
file_id sfixed32 The file ID that the raster image corresponds

to
channel sfixed32 The image channel (z-coordinate)
stokes sfixed32 The image stokes coordinate
compression_type CompressionType The compression algorithm used.
compres-
sion_quality

float Compression quality switch

sync_id sfixed32 The ID of the sync sequence
tile_count sfixed32 The number of tiles in a sync group
animation_id sfixed32 The ID of the animation (if any)
tiles TileData repeated List of tile data

RasterTileSync

Source file: stream/raster_tile.proto

Field Type Label Description
file_id sfixed32 The file ID that the raster image corresponds

to
channel sfixed32 The image channel (z-coordinate)
stokes sfixed32 The image stokes coordinate
sync_id sfixed32 The ID of the sync sequence
animation_id sfixed32 The ID of the animation (if any)
end_sync bool Is this a start or end sync message?

2.5. Protocol buffer reference 53

https://github.com/CARTAvis/carta-protobuf/blob/dev/request/pv_request.proto
https://github.com/CARTAvis/carta-protobuf/blob/dev/stream/raster_tile.proto
https://github.com/CARTAvis/carta-protobuf/blob/dev/stream/raster_tile.proto

CARTA Interface Control Document

RegionFileInfoRequest

Source file: request/region_file_info.proto

REGION_FILE_INFO_REQUEST: Requests contents for a specific region file on the server Backend responds with
REGION_FILE_INFO_RESPONSE

Field Type Label Description
directory string Required directory name
file string Required file name

RegionFileInfoResponse

Source file: request/region_file_info.proto

REGION_FILE_INFO_RESPONSE Response for REGION_FILE_INFO_REQUEST. Gives information on the requested
file

Field Type Label Description
success bool Defines whether the RE-

GION_INFO_REQUEST was successful
message string Error message (if applicable)
file_info FileInfo Basic info about region file
contents string repeated Contents of file; each string is a line

RegionHistogramData

Source file: stream/region_histogram.proto

REGION_HISTOGRAM_DATA: Stats data for a specific region

Field Type Label Description
file_id sfixed32 The file ID that the histogram corresponds

to
region_id sfixed32 The region ID corresponding to the his-

togram. If the histogram corresponds to the
entire current 2D image, the region ID has a
value of -1.

channel sfixed32 The image channel corresponding to the his-
togram

stokes sfixed32 The image stokes corresponding to the his-
togram

histograms Histogram Array of histograms of the current file, re-
gion, channel and stokes

progress float Progress indicator, in the case of partial his-
togram results being sent

config HistogramConfig Histogram configuration from the frontend

54 Chapter 2. Versioning

https://github.com/CARTAvis/carta-protobuf/blob/dev/request/region_file_info.proto
https://github.com/CARTAvis/carta-protobuf/blob/dev/request/region_file_info.proto
https://github.com/CARTAvis/carta-protobuf/blob/dev/stream/region_histogram.proto

CARTA Interface Control Document

RegionListRequest

Source file: request/region_list.proto

REGION_LIST_REQUEST: Requests the list of available region files for a given directory. Backend responds with
REGION_LIST_RESPONSE

Field Type Label Description
directory string Required directory name
filter_mode FileListFilterMode Filter mode to use when showing the file list

RegionListResponse

Source file: request/region_list.proto

REGION_LIST_RESPONSE Response for REGION_LIST_REQUEST. Gives a list of available region files (and their
types), as well as subdirectories

Field Type Label Description
success bool Defines whether the

REGION_LIST_REQUEST was success-
ful

message string Error message (if applicable)
directory string Directory of listing
parent string Directory parent (null/empty if top-level)
files FileInfo repeated List of available image files, with file type

information and size information.
subdirectories DirectoryInfo repeated List of available subdirectories, with number

of items and modified date
cancel bool

RegionStatsData

Source file: stream/region_stats.proto

REGION_STATS_DATA: Stats data for a specific region

Field Type Label Description
file_id sfixed32 The file ID that the profile corresponds to
region_id sfixed32 The region_id corresponding to this profile.

If the statistics data corresponds to the entire
current 2D image, the region ID has a value
of -1.

channel sfixed32 The image channel used to generate the
statistics

stokes sfixed32 The image stokes parameter used to generate
the profiles

statistics StatisticsValue repeated Array of statistics values, each correspond-
ing to a particular measurement, such as
max, min, mean, etc

2.5. Protocol buffer reference 55

https://github.com/CARTAvis/carta-protobuf/blob/dev/request/region_list.proto
https://github.com/CARTAvis/carta-protobuf/blob/dev/request/region_list.proto
https://github.com/CARTAvis/carta-protobuf/blob/dev/stream/region_stats.proto

CARTA Interface Control Document

RegisterViewer

Source file: control/register_viewer.proto

REGISTER_VIEWER: Registers the viewer with the backend. Responds with REGISTER_VIEWER_ACK

Field Type Label Description
session_id fixed32 Unique session ID parameter (can be gener-

ated using UUID libraries). Passing in an
existing session ID can be used for resuming
sessions

api_key string Optional user-specific API key to be used for
basic authentication. Could be an encrypted
JWT for secure authentication.

client_feature_flags fixed32 Optional feature bitflag specifying client-
side feature set

RegisterViewerAck

Source file: control/register_viewer.proto

REGISTER_VIEWER_ACK Acknowledgement response for REGISTER_VIEWER. Informs the frontend whether the
session was correctly.

Field Type Label Description
session_id fixed32 Unique session ID
success bool Defines whether the REGISTER_VIEWER

command was successful
message string Error message (if applicable)
session_type SessionType Defines the type of session established
server_feature_flags fixed32 Optional feature bitflag specifying server-

side feature set
user_preferences map<key: string,

value: string>
repeated Map of user preferences retrieved

from the server database. If this is
empty and the server does not have the
USER_PREFERENCES feature flag set,
then the user preferences are read from
localStorage instead.

user_layouts map<key: string,
value: string>

repeated Map of user layouts retrieved from the server
database

platform_strings map<key: string,
value: string>

repeated Map of server-generated platform informa-
tion strings

56 Chapter 2. Versioning

https://github.com/CARTAvis/carta-protobuf/blob/dev/control/register_viewer.proto
https://github.com/CARTAvis/carta-protobuf/blob/dev/control/register_viewer.proto

CARTA Interface Control Document

RemoveRegion

Source file: control/region.proto

REMOVE_REGION: Removes a region

Field Type Label Description
region_id sfixed32 Unique region ID of the region to be re-

moved

RemoveRequiredTiles

Source file: control/tiles.proto

REMOVE_REQUIRED_TILES Provides a list of tiles that are required for the specified file

Field Type Label Description
file_id sfixed32 The file ID that the view corresponds to
tiles sfixed32 repeated The list of tiles required, in encoded coordi-

nate

ResumeSession

Source file: control/resume_session.proto

Field Type Label Description
images ImageProperties repeated
catalog_files OpenCatalogFile repeated

ResumeSessionAck

Source file: control/resume_session.proto

Field Type Label Description
success bool
message string

SaveFile

Source file: request/save_file.proto

2.5. Protocol buffer reference 57

https://github.com/CARTAvis/carta-protobuf/blob/dev/control/region.proto
https://github.com/CARTAvis/carta-protobuf/blob/dev/control/tiles.proto
https://github.com/CARTAvis/carta-protobuf/blob/dev/control/resume_session.proto
https://github.com/CARTAvis/carta-protobuf/blob/dev/control/resume_session.proto
https://github.com/CARTAvis/carta-protobuf/blob/dev/request/save_file.proto

CARTA Interface Control Document

Field Type Label Description
file_id sfixed32
out-
put_file_directory

string

output_file_name string
output_file_type FileType The format of a new image file
region_id sfixed32
channels sfixed32 repeated Set image channels: [start, end, stride]
stokes sfixed32 repeated Set image stokes: [start, end, stride]
keep_degenerate bool
rest_freq double Set the rest frequency (Hz) of the image

SaveFileAck

Source file: request/save_file.proto

Field Type Label Description
file_id sfixed32
success bool
message string

ScriptingRequest

Source file: request/scripting.proto

Field Type Label Description
script-
ing_request_id

sfixed32 Used to connect a single scripting request to
its response

target string the path of the target object. e.g. active-
Frame.renderConfig

action string the name of the function to call. e.g. setCol-
orMap

parameters string JSON array of parameters. e.g. ‘[“viridis”]’
async bool flag indicating whether the frontend should

execute this asynchronously, or only return
once the call is complete

return_path string optional string indicating the path of the re-
sponse sub-object to return. If this is empty,
the entire response will be returned.

58 Chapter 2. Versioning

https://github.com/CARTAvis/carta-protobuf/blob/dev/request/save_file.proto
https://github.com/CARTAvis/carta-protobuf/blob/dev/request/scripting.proto

CARTA Interface Control Document

ScriptingResponse

Source file: request/scripting.proto

Field Type Label Description
script-
ing_request_id

sfixed32 should match the incoming request ID

success bool indicates whether the call was correctly exe-
cuted

message string optional error message
response string JSON-parsable response. e.g. “true”, or the

base64-encoded string

SetContourParameters

Source file: control/contour.proto

SET_CONTOUR_PARAMETERS Sets the contour parameters for a file

Field Type Label Description
file_id fixed32 The file ID that the contour corresponds to
reference_file_id fixed32 The file ID of the reference image that the

contour vertices should be mapped to
image_bounds ImageBounds The XY bounds corresponding to the image

data in pixel coordinates
levels double repeated Contour levels
smoothing_mode SmoothingMode Pre-contouring smoothing mode
smoothing_factor int32 Contour smoothness factor. For block aver-

aging, this is the block width For Gaussian
smoothing, this defines both the Gaussian
width, and the kernel size

decimation_factor int32 Decimation factor, indicates to what 1/Nth
of a pixel the contour vertices should be
rounded to

compression_level int32 Zstd compression level
contour_chunk_size int32 Size of contour chunks, in number of ver-

tices. If this is set to zero, partial contour
results are not used

SetCursor

Source file: control/set_cursor.proto

SET_CURSOR: Sets the current cursor position in image space coordinates. The cursor defines a special case of a
region, with a single control point.

Field Type Label Description
file_id sfixed32 Which file slot the cursor is moving over
point Point XY-coordinates of cursor in image space
spa-
tial_requirements

SetSpatialRequirements Optional accompanying spatial require-
ments message to be processed prior to
cursor update

2.5. Protocol buffer reference 59

https://github.com/CARTAvis/carta-protobuf/blob/dev/request/scripting.proto
https://github.com/CARTAvis/carta-protobuf/blob/dev/control/contour.proto
https://github.com/CARTAvis/carta-protobuf/blob/dev/control/set_cursor.proto

CARTA Interface Control Document

SetHistogramRequirements

Source file: control/region_requirements.proto

SET_HISTOGRAM_REQUIREMENTS: Sets which histogram data needs to be streamed to the frontend when the
region is updated

Field Type Label Description
file_id sfixed32 Which file slot the requirements describe
region_id sfixed32 ID of the region that is having requirements

defined. If a region ID of -1 is given, this
corresponds to the entire 2D image.

histograms HistogramConfig repeated List of required histograms, along with the
number of bins. If the channel is -1, the cur-
rent channel is used. If the channel is -2, the
histogram is constructed over all channels. If
the number of bins is less than zero, an auto-
matic bin size is used, based on the number
of values.

SetImageChannels

Source file: control/set_image_channels.proto

SET_IMAGE_CHANNELS Sets the current image channel and Stokes parameter

Field Type Label Description
file_id sfixed32 The file ID that the view corresponds to
channel sfixed32 The image channel (Z-coordinate)
stokes sfixed32 The image stokes parameter
required_tiles AddRequiredTiles Required tiles when changing channels

SetRegion

Source file: control/region.proto

SET_REGION: Creates or updates a region. Backend responds with SET_REGION_ACK

Field Type Label Description
file_id sfixed32 File slot of the reference image
region_id sfixed32 Unique region ID. <=0 if a new region is be-

ing created.
region_info RegionInfo Region parameters
preview_region bool Update region for pv preview only

60 Chapter 2. Versioning

https://github.com/CARTAvis/carta-protobuf/blob/dev/control/region_requirements.proto
https://github.com/CARTAvis/carta-protobuf/blob/dev/control/set_image_channels.proto
https://github.com/CARTAvis/carta-protobuf/blob/dev/control/region.proto

CARTA Interface Control Document

SetRegionAck

Source file: control/region.proto

SET_REGION_ACK: Response for SET_REGION

Field Type Label Description
success bool Defines whether SET_REGION was success-

ful
message string Error message (if applicable)
region_id sfixed32 The unique region ID. If the region is up-

dated, this will be the same as the region ID
specified in SET_REGION. If a new region is
being created, the ID of the new region will
be passed back.

SetSpatialRequirements

Source file: control/region_requirements.proto

SET_SPATIAL_REQUIREMENTS: Sets which information needs to be streamed to the frontend when the region is
updated

Field Type Label Description
file_id sfixed32 Which file slot the requirements describe
region_id sfixed32 ID of the region that is having requirements

defined. If a region ID of 0 is given, this
corresponds to the point region defined by
the cursor position.

spatial_profiles SpatialConfig repeated List of spatial profiles needed.

SetSpectralRequirements

Source file: control/region_requirements.proto

SET_SPECTRAL_REQUIREMENTS: Sets which spectral profile data needs to be streamed to the frontend when the
region is updated

Field Type Label Description
file_id sfixed32 Which file slot the requirements describe
region_id sfixed32 ID of the region that is having requirements

defined. If a region ID of 0 is given, this
corresponds to the point region defined by
the cursor position.

spectral_profiles SpectralConfig repeated List of spectral profiles needed, along with
which stats types are needed for each profile.

2.5. Protocol buffer reference 61

https://github.com/CARTAvis/carta-protobuf/blob/dev/control/region.proto
https://github.com/CARTAvis/carta-protobuf/blob/dev/control/region_requirements.proto
https://github.com/CARTAvis/carta-protobuf/blob/dev/control/region_requirements.proto

CARTA Interface Control Document

SetStatsRequirements

Source file: control/region_requirements.proto

SET_STATS_REQUIREMENTS: Sets which stats data needs to be streamed to the frontend when the region is updated

Field Type Label Description
file_id sfixed32 Which file slot the requirements describe
region_id sfixed32 ID of the region that is having requirements

defined. If a region ID of -1 is given, this
corresponds to the entire 2D image.

stats_configs StatsConfig repeated List of required stats

SetVectorOverlayParameters

Source file: control/vector_overlay.proto

SET_VECTOR_OVERLAY_PARAMETERS Sets the overlay parameters for a file

Field Type Label Description
file_id fixed32 The file ID that the overlay corresponds to
image_bounds ImageBounds The XY bounds corresponding to the image

data in pixel coordinates. Currently unused
smoothing_factor fixed32 Block smoothing factor to use. Must be an

even integer, corresponds to the mip coordi-
nate.

fractional bool Whether to use fractional polarization inten-
sity

threshold double Threshold value to use. If this is set to NaN,
no threshold is applied.

debiasing bool Whether to use debiasing
q_error double Stokes Q error when debiasing
u_error double Stokes U error when debiasing
stokes_intensity sfixed32 The Stokes coordinate to use when gener-

ating vector intensity. If this is < 0, uni-
form intensity is used. If both this and
stokes_angle are < 0, the overlay require-
ment is cleared

stokes_angle sfixed32 The Stokes coordinate to use when generat-
ing vector angle. If this is < 0, uniform angle
is used (e.g. when rendering block markers)

compression_type CompressionType The compression algorithm to use.
compres-
sion_quality

float Compression quality switch

62 Chapter 2. Versioning

https://github.com/CARTAvis/carta-protobuf/blob/dev/control/region_requirements.proto
https://github.com/CARTAvis/carta-protobuf/blob/dev/control/vector_overlay.proto

CARTA Interface Control Document

SpatialConfig

Source file: control/region_requirements.proto

Field Type Label Description
coordinate string The required spatial coordinate (“x” or “y”).
start sfixed32 The start of the required range (inclusive). If

the start and end are the same (i.e. the range
is empty), the default of 0 is used.

end sfixed32 The end of the required range (exclusive). If
the start and end are the same (i.e. the range
is empty), the height or width of the image
is used.

mip sfixed32 The maximum required mip. The backend
must return data of at least this resolution,
but may return a higher resolution. If this is
unset or 0, the full-resolution data is used.

width sfixed32 Width of line region for line profile. Not
used for point region.

SpatialProfileData

Source file: stream/spatial_profile.proto

SPATIAL_PROFILE_DATA: Data for spatial profile set for a specific file

Field Type Label Description
file_id sfixed32 The file ID that the profile corresponds to
region_id sfixed32 The region_id corresponding to this profile.

If the profile corresponds to the cursor posi-
tion, the region ID is zero.

x sfixed32 The pixel X-coordinate of the profile set
y sfixed32 The pixel Y-coordinate of the profile set
channel sfixed32 The image channel used to generate the pro-

files
stokes sfixed32 The image stokes parameter used to generate

the profiles
value float The value of the image at the given coordi-

nates
profiles SpatialProfile repeated Spatial profiles for each required profile type

SpectralConfig

Source file: control/region_requirements.proto

2.5. Protocol buffer reference 63

https://github.com/CARTAvis/carta-protobuf/blob/dev/control/region_requirements.proto
https://github.com/CARTAvis/carta-protobuf/blob/dev/stream/spatial_profile.proto
https://github.com/CARTAvis/carta-protobuf/blob/dev/control/region_requirements.proto

CARTA Interface Control Document

Field Type Label Description
coordinate string The required spectral coordinate (“z”), op-

tionally preceded by a polarization parame-
ter. If no polarization parameter is present,
or if the coordinate is empty, the active po-
larization parameter is used.

stats_types StatsType repeated The required stats type. If the region is a
point region, this field is ignored.

SpectralProfileData

Source file: stream/spectral_profile.proto

SPECTRAL_PROFILE_DATA: Data for spectral profile set for a specific file

Field Type Label Description
file_id sfixed32 The file ID that the profile corresponds to
region_id sfixed32 The region ID that the stats data corresponds

to. If the profile corresponds to the cursor
position, the region ID has a value of 0.

stokes sfixed32 The image stokes parameter used to generate
the profiles

progress float Progress indicator, in the case of partial pro-
file results being sent. If the profile calcu-
lations are time-consuming, regular updates
should be sent to the frontend. If the data is
complete, progress >= 1.

profiles SpectralProfile repeated Spatial profiles for each required profile type

StartAnimation

Source file: control/animation.proto

START_ANIMATION: Starts an animation, as defined by the start, stop and step definitions. Backend responds with
START_ANIMATION_ACK

64 Chapter 2. Versioning

https://github.com/CARTAvis/carta-protobuf/blob/dev/stream/spectral_profile.proto
https://github.com/CARTAvis/carta-protobuf/blob/dev/control/animation.proto

CARTA Interface Control Document

Field Type Label Description
file_id sfixed32 Which file slot the animation describes.
first_frame AnimationFrame The lower bound of the animation when

looping.
start_frame AnimationFrame The starting point of the animation.
last_frame AnimationFrame The upper bound of the animation.
delta_frame AnimationFrame The frame change step for the animation.

For example, a delta frame of {channel=1,
stokes=0} would step through each channel
in the file.

frame_rate sfixed32 Frame rate per second
looping bool Whether to loop the animation indefinitely.
reverse bool Whether to reverse the animation direction

when endFrame is reached.
required_tiles AddRequiredTiles Required tiles when changing channels
matched_frames map<key:

sfixed32, value:
MatchedFrameList>

repeated

stokes_indices sfixed32 repeated Required stokes frames with respect to
stokes types

StartAnimationAck

Source file: control/animation.proto

START_ANIMATION_ACK Response for START_ANIMATION

Field Type Label Description
success bool Defines whether START_ANIMATION was

successful
message string Error message (if applicable)
animation_id sfixed32 The animation ID of the new animation

StatsConfig

Source file: control/region_requirements.proto

Field Type Label Description
coordinate string
stats_types StatsType repeated

2.5. Protocol buffer reference 65

https://github.com/CARTAvis/carta-protobuf/blob/dev/control/animation.proto
https://github.com/CARTAvis/carta-protobuf/blob/dev/control/region_requirements.proto

CARTA Interface Control Document

StokesFile

Source file: control/concat_stokes_files.proto

Field Type Label Description
directory string Required directory name
file string Required file name
hdu string Which HDU to load (if applicable). If left

blank, the first HDU will be used
polarization_type PolarizationType Polarization type

StopAnimation

Source file: control/animation.proto

STOP_ANIMATION Stops the playing animation

Field Type Label Description
file_id sfixed32 Which file slot the animation describes.
end_frame AnimationFrame The ending point of the animation.

StopFileList

Source file: request/file_list.proto

Field Type Label Description
file_list_type FileListType

StopFitting

Source file: request/fitting_request.proto

STOP_FITTING: Cancels the requested fitting.

Field Type Label Description
file_id sfixed32 Stop image fitting with respect to the image

file id

StopMomentCalc

Source file: control/stop_moment_calc.proto

Field Type Label Description
file_id sfixed32 Stop the moment calculation with respect to

the image file id

66 Chapter 2. Versioning

https://github.com/CARTAvis/carta-protobuf/blob/dev/control/concat_stokes_files.proto
https://github.com/CARTAvis/carta-protobuf/blob/dev/control/animation.proto
https://github.com/CARTAvis/carta-protobuf/blob/dev/request/file_list.proto
https://github.com/CARTAvis/carta-protobuf/blob/dev/request/fitting_request.proto
https://github.com/CARTAvis/carta-protobuf/blob/dev/control/stop_moment_calc.proto

CARTA Interface Control Document

StopPvCalc

Source file: control/stop_pv_calc.proto

Field Type Label Description
file_id sfixed32 Stop the PV image calculation for the image

file id

StopPvPreview

Source file: control/stop_pv_calc.proto

Field Type Label Description
preview_id sfixed32 Stop the PV preview for the preview viewer

id

VectorOverlayTileData

Source file: stream/vector_overlay_tile.proto

Field Type Label Description
file_id sfixed32 The file ID that the vector overlay image cor-

responds to
channel sfixed32 The image channel (z-coordinate)
stokes_intensity sfixed32 The Stokes coordinate that was used to gen-

erate vector intensity. If this is < 0, uniform
intensity is used

stokes_angle sfixed32 The Stokes coordinate that was used to gen-
erate vector angle. If this is < 0, uniform an-
gle is used (e.g. when rendering block mark-
ers)

compression_type CompressionType The compression algorithm used.
compres-
sion_quality

float Compression quality switch

intensity_tiles TileData repeated List of tile data for vector intensity. The
length of this list must match that of
angle_tiles, or be zero

angle_tiles TileData repeated List of tile data for vector angle. The
length of this list must match that of
intensity_tiles, or be zero

progress double Progress of the vector overlay being sent. If
this is zero, the message is assumed to con-
tain the entire contour sets

2.5. Protocol buffer reference 67

https://github.com/CARTAvis/carta-protobuf/blob/dev/control/stop_pv_calc.proto
https://github.com/CARTAvis/carta-protobuf/blob/dev/control/stop_pv_calc.proto
https://github.com/CARTAvis/carta-protobuf/blob/dev/stream/vector_overlay_tile.proto

CARTA Interface Control Document

2.5.2 Sub-messages

AnimationFrame

Source file: shared/defs.proto

Field Type Label Description
channel sfixed32
stokes sfixed32

AnnotationStyle

Source file: shared/defs.proto

Field Type Label Description
point_shape PointAnnotationShape Point annotation shape
point_width sfixed32 Point annotation width
text_label0 string Text annotation text / Compass annotation

north label
text_label1 string Compass annotation east label
coordinate_system string Compass and Ruler coordinate sytem
is_north_arrow bool Compass annotation north arrowhead
is_east_arrow bool Compass annotation east arrowhead
text_position TextAnnotationPosition Text annotation position
font_style string Font style (bold, italic, bold_italic)
font string Font (Times / Helvetica / Courier)
font_size sfixed32 Font size for Text, Compass, Ruler

AxesNumbers

Source file: shared/defs.proto

Field Type Label Description
spatial_x sfixed32 Spatial X axis number
spatial_y sfixed32 Spatial Y axis number
spectral sfixed32 Spectral axis number
stokes sfixed32 Stokes axis number
depth sfixed32 Depth axis is non-render axis that is not

stokes (if any)

68 Chapter 2. Versioning

https://github.com/CARTAvis/carta-protobuf/blob/dev/shared/defs.proto
https://github.com/CARTAvis/carta-protobuf/blob/dev/shared/defs.proto
https://github.com/CARTAvis/carta-protobuf/blob/dev/shared/defs.proto

CARTA Interface Control Document

Beam

Source file: shared/defs.proto

describe each beam for multi-beam images

Field Type Label Description
channel sfixed32
stokes sfixed32
major_axis float
minor_axis float
pa float

CatalogFileInfo

Source file: shared/defs.proto

Field Type Label Description
name string
type CatalogFileType
file_size sfixed64
description string
coosys Coosys repeated
date sfixed64

CatalogHeader

Source file: shared/defs.proto

Field Type Label Description
name string
data_type ColumnType
column_index sfixed32
description string
units string

CatalogImageBounds

Source file: shared/defs.proto

Field Type Label Description
x_column_name string
y_column_name string
image_bounds ImageBounds

2.5. Protocol buffer reference 69

https://github.com/CARTAvis/carta-protobuf/blob/dev/shared/defs.proto
https://github.com/CARTAvis/carta-protobuf/blob/dev/shared/defs.proto
https://github.com/CARTAvis/carta-protobuf/blob/dev/shared/defs.proto
https://github.com/CARTAvis/carta-protobuf/blob/dev/shared/defs.proto

CARTA Interface Control Document

ColumnData

Source file: shared/defs.proto

Field Type Label Description
data_type ColumnType
string_data string repeated All data types other than string sent as binary
binary_data bytes binary data will get converted to a TypedAr-

ray

Coosys

Source file: shared/defs.proto

Field Type Label Description
equinox string
epoch string
system string

DirectoryInfo

Source file: shared/defs.proto

Directory info message structure (internal use only)

Field Type Label Description
name string
item_count sfixed32
date sfixed64

DoubleBounds

Source file: shared/defs.proto

Field Type Label Description
min double
max double

DoublePoint

Source file: shared/defs.proto

Field Type Label Description
x double
y double

70 Chapter 2. Versioning

https://github.com/CARTAvis/carta-protobuf/blob/dev/shared/defs.proto
https://github.com/CARTAvis/carta-protobuf/blob/dev/shared/defs.proto
https://github.com/CARTAvis/carta-protobuf/blob/dev/shared/defs.proto
https://github.com/CARTAvis/carta-protobuf/blob/dev/shared/defs.proto
https://github.com/CARTAvis/carta-protobuf/blob/dev/shared/defs.proto

CARTA Interface Control Document

FileInfo

Source file: shared/defs.proto

File info message structure (internal use only)

Field Type Label Description
name string
type FileType
size sfixed64
HDU_list string repeated
date sfixed64

FileInfoExtended

Source file: shared/defs.proto

Field Type Label Description
dimensions sfixed32 Number of dimensions of the image file
width sfixed32 Width of the XY plane
height sfixed32 Height of the XY plane
depth sfixed32 Number of channels
stokes sfixed32 Number of Stokes parameters
stokes_vals string repeated List of Stokes parameters contained in the

file (if applicable). For files that do not
explicitly specify Stokes files, this will be
blank.

header_entries HeaderEntry repeated Header entries from header string or at-
tributes

computed_entries HeaderEntry repeated
axes_numbers AxesNumbers Axes numbers for directions, spectral, and

stokes

FilterConfig

Source file: shared/defs.proto

Field Type Label Description
column_name string
compari-
son_operator

ComparisonOperator

value double
secondary_value double
sub_string string

2.5. Protocol buffer reference 71

https://github.com/CARTAvis/carta-protobuf/blob/dev/shared/defs.proto
https://github.com/CARTAvis/carta-protobuf/blob/dev/shared/defs.proto
https://github.com/CARTAvis/carta-protobuf/blob/dev/shared/defs.proto

CARTA Interface Control Document

FloatBounds

Source file: shared/defs.proto

Field Type Label Description
min float
max float

GaussianComponent

Source file: shared/defs.proto

parameters of a 2D Gaussian component for image fitting

Field Type Label Description
center DoublePoint x/y coordinate of the center in pixels
amp double amplitude of the component
fwhm DoublePoint full width at half maximum along x/y coor-

dinate in pixels
pa double position angle in degrees

HeaderEntry

Source file: shared/defs.proto

Field Type Label Description
name string
value string
entry_type EntryType
numeric_value double
comment string

Histogram

Source file: shared/defs.proto

Field Type Label Description
num_bins sfixed32
bin_width double
first_bin_center double
bins sfixed32 repeated
mean double
std_dev double

72 Chapter 2. Versioning

https://github.com/CARTAvis/carta-protobuf/blob/dev/shared/defs.proto
https://github.com/CARTAvis/carta-protobuf/blob/dev/shared/defs.proto
https://github.com/CARTAvis/carta-protobuf/blob/dev/shared/defs.proto
https://github.com/CARTAvis/carta-protobuf/blob/dev/shared/defs.proto

CARTA Interface Control Document

HistogramConfig

Source file: shared/defs.proto

Field Type Label Description
coordinate string
channel sfixed32
fixed_num_bins bool
num_bins sfixed32
fixed_bounds bool
bounds DoubleBounds

ImageBounds

Source file: shared/defs.proto

Field Type Label Description
x_min sfixed32
x_max sfixed32
y_min sfixed32
y_max sfixed32

IntBounds

Source file: shared/defs.proto

Field Type Label Description
min sfixed32
max sfixed32

LineProfileAxis

Source file: shared/defs.proto

Field Type Label Description
axis_type ProfileAxisType
crpix float
crval float
cdelt float
unit string

2.5. Protocol buffer reference 73

https://github.com/CARTAvis/carta-protobuf/blob/dev/shared/defs.proto
https://github.com/CARTAvis/carta-protobuf/blob/dev/shared/defs.proto
https://github.com/CARTAvis/carta-protobuf/blob/dev/shared/defs.proto
https://github.com/CARTAvis/carta-protobuf/blob/dev/shared/defs.proto

CARTA Interface Control Document

ListProgress

Source file: shared/defs.proto

Field Type Label Description
file_list_type FileListType
percentage float
checked_count sfixed32
total_count sfixed32

MatchedFrameList

Source file: shared/defs.proto

Field Type Label Description
frame_numbers float repeated

Point

Source file: shared/defs.proto

Field Type Label Description
x float
y float

PvPreviewSettings

Source file: shared/defs.proto

Preview parameters of a PV_REQUEST

Field Type Label Description
preview_id sfixed32 Preview ID for the PV preview viewer
region_id sfixed32 Region ID for the subimage in the xy plane
rebin_xy sfixed32 Downsampling in xy axes
rebin_z sfixed32 Downsampling in z axis
compression_type CompressionType The compression algorithm to use
im-
age_compression_quality

float Compression quality from frontend perfor-
mance preferences

anima-
tion_compression_quality

float

74 Chapter 2. Versioning

https://github.com/CARTAvis/carta-protobuf/blob/dev/shared/defs.proto
https://github.com/CARTAvis/carta-protobuf/blob/dev/shared/defs.proto
https://github.com/CARTAvis/carta-protobuf/blob/dev/shared/defs.proto
https://github.com/CARTAvis/carta-protobuf/blob/dev/shared/defs.proto

CARTA Interface Control Document

RegionInfo

Source file: shared/defs.proto

Field Type Label Description
region_type RegionType The type of region described by the control

points. The meaning of the control points
will differ, depending on the type of region
being defined.

control_points Point repeated Control points for the region
rotation float (Only applicable for ellipse and rectangle)

Rotation of the region in the xy plane (ra-
dians).

RegionStyle

Source file: shared/defs.proto

Field Type Label Description
name string The name of the region, displayed as an an-

notation label.
color string Color as a name (“blue”), RGB string, or hex

string
line_width sfixed32 Width in pixels
dash_list sfixed32 repeated Dash length: on, off
annotation_style AnnotationStyle Annotation Styles

SpatialProfile

Source file: shared/defs.proto

Field Type Label Description
start sfixed32
end sfixed32
raw_values_fp32 bytes
coordinate string
mip sfixed32
line_axis LineProfileAxis

SpectralProfile

Source file: shared/defs.proto

Field Type Label Description
coordinate string
stats_type StatsType
raw_values_fp32 bytes
raw_values_fp64 bytes

2.5. Protocol buffer reference 75

https://github.com/CARTAvis/carta-protobuf/blob/dev/shared/defs.proto
https://github.com/CARTAvis/carta-protobuf/blob/dev/shared/defs.proto
https://github.com/CARTAvis/carta-protobuf/blob/dev/shared/defs.proto
https://github.com/CARTAvis/carta-protobuf/blob/dev/shared/defs.proto

CARTA Interface Control Document

StatisticsValue

Source file: shared/defs.proto

Field Type Label Description
stats_type StatsType
value double

TileData

Source file: shared/defs.proto

Field Type Label Description
layer sfixed32 Tile layer coordinate. If this is < 0, the mip

value is used for coordinates instead
x sfixed32 Tile x coordinate
y sfixed32 Tile y coordinate
width sfixed32 Width of the tile data. If this is left as zero,

the default tile size should be used
height sfixed32 Height of the tile data. If this is left as zero,

the default tile size should be used
image_data bytes Image data. For uncompressed data, this is

converted into FP32, while for compressed
data, this is passed to the compression li-
brary for decompression.

nan_encodings bytes Run-length encodings of NaN values. These
values are used to restore the NaN values af-
ter decompression.

mip sfixed32 Mip coordinate. Ignored if layer >= 0

2.5.3 Enums

CatalogFileType

Source file: shared/enums.proto

Name Number Description
FITSTable 0
VOTable 1
Unknown 2

76 Chapter 2. Versioning

https://github.com/CARTAvis/carta-protobuf/blob/dev/shared/defs.proto
https://github.com/CARTAvis/carta-protobuf/blob/dev/shared/defs.proto
https://github.com/CARTAvis/carta-protobuf/blob/dev/shared/enums.proto

CARTA Interface Control Document

ClientFeatureFlags

Source file: shared/enums.proto

Name Number Description
CLIENT_FEATURE_NONE 0
WEB_GL 1
WEB_GL_2 2
WEB_ASSEMBLY 4
WEB_ASSEMBLY_THREADS 8
OFFSCREEN_CANVAS 16

ColumnType

Source file: shared/enums.proto

Name Number Description
UnsupportedType 0
String 1
Uint8 2
Int8 3
Uint16 4
Int16 5
Uint32 6
Int32 7
Uint64 8
Int64 9
Float 10
Double 11
Bool 12

ComparisonOperator

Source file: shared/enums.proto

Name Number Description
Equal 0
NotEqual 1
Lesser 2
Greater 3
LessorOrEqual 4
GreaterOrEqual 5
RangeOpen 6
RangeClosed 7

2.5. Protocol buffer reference 77

https://github.com/CARTAvis/carta-protobuf/blob/dev/shared/enums.proto
https://github.com/CARTAvis/carta-protobuf/blob/dev/shared/enums.proto
https://github.com/CARTAvis/carta-protobuf/blob/dev/shared/enums.proto

CARTA Interface Control Document

CompressionType

Source file: shared/enums.proto

Name Number Description
NONE 0
ZFP 1
SZ 2

CoordinateType

Source file: shared/enums.proto

Name Number Description
PIXEL 0
WORLD 1

EntryType

Source file: shared/enums.proto

Name Number Description
STRING 0
FLOAT 1
INT 2

ErrorSeverity

Source file: shared/enums.proto

Name Number Description
DEBUG 0
INFO 1
WARNING 2
ERROR 3
CRITICAL 4

EventType

Source file: shared/enums.proto

Name Number Description
EMPTY_EVENT 0
REGISTER_VIEWER 1
FILE_LIST_REQUEST 2
FILE_INFO_REQUEST 3
OPEN_FILE 4

continues on next page

78 Chapter 2. Versioning

https://github.com/CARTAvis/carta-protobuf/blob/dev/shared/enums.proto
https://github.com/CARTAvis/carta-protobuf/blob/dev/shared/enums.proto
https://github.com/CARTAvis/carta-protobuf/blob/dev/shared/enums.proto
https://github.com/CARTAvis/carta-protobuf/blob/dev/shared/enums.proto
https://github.com/CARTAvis/carta-protobuf/blob/dev/shared/enums.proto

CARTA Interface Control Document

Table 1 – continued from previous page
Name Number Description
SET_IMAGE_CHANNELS 6
SET_CURSOR 7
SET_SPATIAL_REQUIREMENTS 8
SET_HISTOGRAM_REQUIREMENTS 9
SET_STATS_REQUIREMENTS 10
SET_REGION 11
REMOVE_REGION 12
CLOSE_FILE 13
SET_SPECTRAL_REQUIREMENTS 14
START_ANIMATION 15
START_ANIMATION_ACK 16
STOP_ANIMATION 17
REGISTER_VIEWER_ACK 18
FILE_LIST_RESPONSE 19
FILE_INFO_RESPONSE 20
OPEN_FILE_ACK 21
SET_REGION_ACK 22
REGION_HISTOGRAM_DATA 23
SPATIAL_PROFILE_DATA 25
SPECTRAL_PROFILE_DATA 26
REGION_STATS_DATA 27
ERROR_DATA 28
ANIMATION_FLOW_CONTROL 29
ADD_REQUIRED_TILES 30
REMOVE_REQUIRED_TILES 31
RASTER_TILE_DATA 32
REGION_LIST_REQUEST 33
REGION_LIST_RESPONSE 34
REGION_FILE_INFO_REQUEST 35
REGION_FILE_INFO_RESPONSE 36
IMPORT_REGION 37
IMPORT_REGION_ACK 38
EXPORT_REGION 39
EXPORT_REGION_ACK 40
SET_CONTOUR_PARAMETERS 45
CONTOUR_IMAGE_DATA 46
RESUME_SESSION 47
RESUME_SESSION_ACK 48
RASTER_TILE_SYNC 49
CATALOG_LIST_REQUEST 50
CATALOG_LIST_RESPONSE 51
CATALOG_FILE_INFO_REQUEST 52
CATALOG_FILE_INFO_RESPONSE 53
OPEN_CATALOG_FILE 54
OPEN_CATALOG_FILE_ACK 55
CLOSE_CATALOG_FILE 56
CATALOG_FILTER_REQUEST 57
CATALOG_FILTER_RESPONSE 58
SCRIPTING_REQUEST 59

continues on next page

2.5. Protocol buffer reference 79

CARTA Interface Control Document

Table 1 – continued from previous page
Name Number Description
SCRIPTING_RESPONSE 60
MOMENT_REQUEST 61
MOMENT_RESPONSE 62
MOMENT_PROGRESS 63
STOP_MOMENT_CALC 64
SAVE_FILE 65
SAVE_FILE_ACK 66
CONCAT_STOKES_FILES 69
CONCAT_STOKES_FILES_ACK 70
FILE_LIST_PROGRESS 71
STOP_FILE_LIST 72
PV_REQUEST 75
PV_RESPONSE 76
PV_PROGRESS 77
STOP_PV_CALC 78
FITTING_REQUEST 79
FITTING_RESPONSE 80
SET_VECTOR_OVERLAY_PARAMETERS 81
VECTOR_OVERLAY_TILE_DATA 82
FITTING_PROGRESS 83
STOP_FITTING 84
PV_PREVIEW_DATA 85
STOP_PV_PREVIEW 86
CLOSE_PV_PREVIEW 87

FileFeatureFlags

Source file: shared/enums.proto

Name Number Description
FILE_FEATURE_NONE 0
ROTATED_DATASET 1
CHANNEL_HISTOGRAMS 2
CUBE_HISTOGRAMS 4
CHANNEL_STATS 8
MEAN_IMAGE 16
MIP_DATASET 32

FileListFilterMode

Source file: shared/enums.proto

Name Number Description
Content 0
Extension 1
AllFiles 2

80 Chapter 2. Versioning

https://github.com/CARTAvis/carta-protobuf/blob/dev/shared/enums.proto
https://github.com/CARTAvis/carta-protobuf/blob/dev/shared/enums.proto

CARTA Interface Control Document

FileListType

Source file: shared/enums.proto

Name Number Description
Image 0
Catalog 1

FileType

Source file: shared/enums.proto

Name Number Description
CASA 0
CRTF 1
DS9_REG 2
FITS 3
HDF5 4
MIRIAD 5
UNKNOWN 6

FittingSolverType

Source file: shared/enums.proto

Types of solvers for the linear least squares system in image fittings

Name Number Description
Qr 0 Uses a rank revealing QR decompo-

sition
Cholesky 1 Uses a Cholesky decomposition
Mcholesky 2 Uses a modified Cholesky decompo-

sition
Svd 3 Uses a singular value decomposition

Moment

Source file: shared/enums.proto

2.5. Protocol buffer reference 81

https://github.com/CARTAvis/carta-protobuf/blob/dev/shared/enums.proto
https://github.com/CARTAvis/carta-protobuf/blob/dev/shared/enums.proto
https://github.com/CARTAvis/carta-protobuf/blob/dev/shared/enums.proto
https://github.com/CARTAvis/carta-protobuf/blob/dev/shared/enums.proto

CARTA Interface Control Document

Name Number Description
MEAN_OF_THE_SPECTRUM 0
INTE-
GRATED_OF_THE_SPECTRUM

1

INTEN-
SITY_WEIGHTED_COORD

2

INTEN-
SITY_WEIGHTED_DISPERSION_OF_THE_COORD

3

MEDIAN_OF_THE_SPECTRUM 4
MEDIAN_COORDINATE 5
STD_ABOUT_THE_MEAN_OF_THE_SPECTRUM6
RMS_OF_THE_SPECTRUM 7
ABS_MEAN_DEVIATION_OF_THE_SPECTRUM8
MAX_OF_THE_SPECTRUM 9
CO-
ORD_OF_THE_MAX_OF_THE_SPECTRUM

10

MIN_OF_THE_SPECTRUM 11
CO-
ORD_OF_THE_MIN_OF_THE_SPECTRUM

12

MomentAxis

Source file: shared/enums.proto

Name Number Description
SPECTRAL 0
STOKES 1

MomentMask

Source file: shared/enums.proto

Name Number Description
None 0
Include 1
Exclude 2

PointAnnotationShape

Source file: shared/enums.proto

82 Chapter 2. Versioning

https://github.com/CARTAvis/carta-protobuf/blob/dev/shared/enums.proto
https://github.com/CARTAvis/carta-protobuf/blob/dev/shared/enums.proto
https://github.com/CARTAvis/carta-protobuf/blob/dev/shared/enums.proto

CARTA Interface Control Document

Name Number Description
SQUARE 0
BOX 1
CIRCLE 2
CIRCLE_LINED 3
DIAMOND 4
DIAMOND_LINED 5
CROSS 6
X 7

PolarizationType

Source file: shared/enums.proto

polarization parameters including the Stokes parameters, circular correlations, and linear correlations (the Stokes axis
defined by the FITS standard)

Name Number Description
POLARIZATION_TYPE_NONE 0
I 1
Q 2
U 3
V 4
RR 5
LL 6
RL 7
LR 8
XX 9
YY 10
XY 11
YX 12
Ptotal 13 Polarized intensity: sqrt(Q^2 + U^2

+ V^2)
Plinear 14 Linearly Polarized intensity:

sqrt(Q^2 + U^2)
PFtotal 15 Polarization Fraction: Ptotal / I
PFlinear 16 Linear Polarization Fraction: Plin-

ear / I
Pangle 17 Linear Polarization Angle: arc-

tan(U/Q) / 2

2.5. Protocol buffer reference 83

https://github.com/CARTAvis/carta-protobuf/blob/dev/shared/enums.proto

CARTA Interface Control Document

ProfileAxisType

Source file: shared/enums.proto

Name Number Description
Offset 0
Distance 1

RegionType

Source file: shared/enums.proto

Name Number Description
POINT 0
LINE 1
POLYLINE 2
RECTANGLE 3
ELLIPSE 4
ANNULUS 5
POLYGON 6
ANNPOINT 7
ANNLINE 8
ANNPOLYLINE 9
ANNRECTANGLE 10
ANNELLIPSE 11
ANNPOLYGON 12
ANNVECTOR 13
ANNRULER 14
ANNTEXT 15
ANNCOMPASS 16

RenderMode

Source file: shared/enums.proto

Name Number Description
RASTER 0
CONTOUR 1

ServerFeatureFlags

Source file: shared/enums.proto

84 Chapter 2. Versioning

https://github.com/CARTAvis/carta-protobuf/blob/dev/shared/enums.proto
https://github.com/CARTAvis/carta-protobuf/blob/dev/shared/enums.proto
https://github.com/CARTAvis/carta-protobuf/blob/dev/shared/enums.proto
https://github.com/CARTAvis/carta-protobuf/blob/dev/shared/enums.proto

CARTA Interface Control Document

Name Number Description
SERVER_FEATURE_NONE 0
SZ_COMPRESSION 1
HEVC_COMPRESSION 2
NVENC_COMPRESSION 4
READ_ONLY 8 Disables write requests, including

saving files, exporting regions, and
writing preferences and layouts files.

USER_PREFERENCES 16
USER_LAYOUTS 32
SCRIPTING 64

SessionType

Source file: shared/enums.proto

Name Number Description
NEW 0
RESUMED 1

SmoothingMode

Source file: shared/enums.proto

Name Number Description
NoSmoothing 0
BlockAverage 1
GaussianBlur 2

SortingType

Source file: shared/enums.proto

Name Number Description
Ascending 0
Descending 1

StatsType

Source file: shared/enums.proto

2.5. Protocol buffer reference 85

https://github.com/CARTAvis/carta-protobuf/blob/dev/shared/enums.proto
https://github.com/CARTAvis/carta-protobuf/blob/dev/shared/enums.proto
https://github.com/CARTAvis/carta-protobuf/blob/dev/shared/enums.proto
https://github.com/CARTAvis/carta-protobuf/blob/dev/shared/enums.proto

CARTA Interface Control Document

Name Number Description
NumPixels 0
NanCount 1
Sum 2
FluxDensity 3
Mean 4
RMS 5
Sigma 6
SumSq 7
Min 8
Max 9
Extrema 10
Blc 11
Trc 12
MinPos 13
MaxPos 14
Blcf 15
Trcf 16
MinPosf 17
MaxPosf 18

TextAnnotationPosition

Source file: shared/enums.proto

Name Number Description
CENTER 0
UPPER_LEFT 1
UPPER_RIGHT 2
LOWER_LEFT 3
LOWER_RIGHT 4
TOP 5
BOTTOM 6
LEFT 7
RIGHT 8

86 Chapter 2. Versioning

https://github.com/CARTAvis/carta-protobuf/blob/dev/shared/enums.proto

	Changelog
	Versioning
	Introduction
	Context
	Behaviour
	Connection
	File browsing
	Data cube navigation
	Zooming and panning
	Channel navigation
	Animation

	Changing view parameters
	Region selection and statistics
	Region creation
	Cursor updates
	Region requirements
	Per-cube histograms

	Data streaming
	User preferences
	Resume the session
	Catalog overlay
	Sequence Diagrams

	Moments generator
	Image fitting

	Layer descriptions
	Application Layer
	Presentation layer
	Session Layer
	Transport Layer

	Protocol buffer reference
	Messages
	AddRequiredTiles
	AnimationFlowControl
	CatalogFileInfoRequest
	CatalogFileInfoResponse
	CatalogFilterRequest
	CatalogFilterResponse
	CatalogListRequest
	CatalogListResponse
	CloseCatalogFile
	CloseFile
	ClosePvPreview
	ConcatStokesFiles
	ConcatStokesFilesAck
	ContourImageData
	ContourSet
	ErrorData
	ExportRegion
	ExportRegionAck
	FileInfoRequest
	FileInfoResponse
	FileListRequest
	FileListResponse
	FittingProgress
	FittingRequest
	FittingResponse
	ImageProperties
	ImportRegion
	ImportRegionAck
	MomentProgress
	MomentRequest
	MomentResponse
	OpenCatalogFile
	OpenCatalogFileAck
	OpenFile
	OpenFileAck
	PvPreviewData
	PvProgress
	PvRequest
	PvResponse
	RasterTileData
	RasterTileSync
	RegionFileInfoRequest
	RegionFileInfoResponse
	RegionHistogramData
	RegionListRequest
	RegionListResponse
	RegionStatsData
	RegisterViewer
	RegisterViewerAck
	RemoveRegion
	RemoveRequiredTiles
	ResumeSession
	ResumeSessionAck
	SaveFile
	SaveFileAck
	ScriptingRequest
	ScriptingResponse
	SetContourParameters
	SetCursor
	SetHistogramRequirements
	SetImageChannels
	SetRegion
	SetRegionAck
	SetSpatialRequirements
	SetSpectralRequirements
	SetStatsRequirements
	SetVectorOverlayParameters
	SpatialConfig
	SpatialProfileData
	SpectralConfig
	SpectralProfileData
	StartAnimation
	StartAnimationAck
	StatsConfig
	StokesFile
	StopAnimation
	StopFileList
	StopFitting
	StopMomentCalc
	StopPvCalc
	StopPvPreview
	VectorOverlayTileData

	Sub-messages
	AnimationFrame
	AnnotationStyle
	AxesNumbers
	Beam
	CatalogFileInfo
	CatalogHeader
	CatalogImageBounds
	ColumnData
	Coosys
	DirectoryInfo
	DoubleBounds
	DoublePoint
	FileInfo
	FileInfoExtended
	FilterConfig
	FloatBounds
	GaussianComponent
	HeaderEntry
	Histogram
	HistogramConfig
	ImageBounds
	IntBounds
	LineProfileAxis
	ListProgress
	MatchedFrameList
	Point
	PvPreviewSettings
	RegionInfo
	RegionStyle
	SpatialProfile
	SpectralProfile
	StatisticsValue
	TileData

	Enums
	CatalogFileType
	ClientFeatureFlags
	ColumnType
	ComparisonOperator
	CompressionType
	CoordinateType
	EntryType
	ErrorSeverity
	EventType
	FileFeatureFlags
	FileListFilterMode
	FileListType
	FileType
	FittingSolverType
	Moment
	MomentAxis
	MomentMask
	PointAnnotationShape
	PolarizationType
	ProfileAxisType
	RegionType
	RenderMode
	ServerFeatureFlags
	SessionType
	SmoothingMode
	SortingType
	StatsType
	TextAnnotationPosition

