

CARTA Interface Control Document

	Date

	14 August 2023

	Authors

	Angus Comrie, Rob Simmonds and the CARTA development team

	Version

	28.13.0

	ICD Version Integer

	28

	CARTA Target

	Version 4.0

Changelog

	Version

	Date

	Description

	0.1.7

	30/08/18

	Added optional field channel_histogram_data to the image view message

	0.1.8

	07/09/18

	Added computed_entries map to the File Info Extended message

	0.1.9

	10/09/18

	Changed computed_entries map to an array of HeaderEntry messages

	0.1.10

	10/09/18

	Added optional field spatial_requirements to the SET_CURSOR message

	0.1.11

	20/09/18

	Added file_id field to SET_REGION and fixed control points typo

	0.1.12

	18/10/18

	Deprecated channel_vals field in SPECTRAL_PROFILE_DATA

	0.1.13

	30/11/18

	Added details on per-cube histogram calculations

	0.1.14

	07/02/19

	Added $BASE folder placeholder

	0.1.15

	05/03/19

	Added target version info

	0.1.16

	25/03/19

	Removed stokes, channel_min and channel_max fields from SET_REGION, and changed StatisticsValue value field to a double type.

	0.1.17

	27/03/19

	Added NumPixels and NanCount stats types

	0.1.18

	28/03/19

	Changed rotation units from radians to degrees

	0.2.0

	07/05/19

	Changed message header information, adjusted stats enum values, added double value support for spectral profile

	0.2.1

	09/05/19

	Added feature flag enums as well as event type enums. Updated animation information and sequence diagrams to include flow control

	0.2.2

	14/05/19

	Added information on tiled rendering

	4.0.0

	02/07/19

	Expanded sequence diagrams and text on tiled rendering and animation. Changed version numbering to match ICD version integer

	4.0.1

	04/07/19

	Fixed incorrect sequence diagrams for file loading

	5.0.0

	15/07/19

	Switched to byte fields instead of repeated float/double for efficiency reasons in spatial and spectral profile messages

	6.0.0

	19/07/19

	Animation ID and timestamps for ACKs

	7.0.0

	23/07/19

	Region file browser and import/export messages

	7.0.1

	08/08/19

	Region export coordinate type

	8.0.0

	21/08/19

	Added messages for retrieving and setting user preferences and layouts

	9.0.0

	17/10/19

	Added/updated messages for contour parameters and streaming

	10.0.0

	25/10/19

	Updated messages for contour streaming

	11.0.0

	20/11/19

	Added messages to resume the session and its ACK

	12.0.0

	18/02/20

	Updated messages for tiled rendering usage during animation

	13.0.0

	19/05/20

	Updated messages for scripting service information (WIP)

	14.0.0

	28/05/20

	Updated messages for catalogs

	15.0.0

	04/07/20

	Added date field to file info, reordered file types alphabetically

	16.0.0

	23/07/20

	Added sub-message for region style, replace RegionProperties with map

	17.0

	27/07/20

	Added spectral line request and response

	17.1.0

	11/08/20

	Non-breaking change: added map of matched frames for spectral matched animation

	17.2.0

	12/08/20

	Non-breaking change: added intensity limit field to line ID query

	18.0.0

	11/12/20

	Added extrema enum value to StatsType. Removed deprecated messages: SetUserLayout, SetUserLayoutAck, SetUserPreferences, SetUserPreferencesAck, and SetRegionRequirements.

	18.1.0

	08/01/21

	Non-breaking change: added beam_table (of type Beam) to OpenFileAck.

	19.0.0

	07/01/21

	Adjusted FileInfoResponse to include map of extended file info messages

	20.0.0

	13/04/21

	Added ConcatStokesFiles messages

	20.1.0

	23/04/21

	Renamed REGION_WRITE_ACCESS to READ_ONLY in ServerFeatureFlags.

	20.2.0

	26/04/21

	Added additional fields to SaveFile for sub-image support.

	21.0.0

	05/05/21

	Added ListProgress and StopFileList messages

	22.0.0

	28/06/21

	Added DirectoryInfo message.

	23.0.0

	28/06/21

	Added SpatialConfig submessage with fields for spatial profile mip and range, and added mip field to SpatialProfile. Updated comments for SpatialConfig and SpectralConfig.

	23.1.0

	23/07/21

	Added SplataloguePing and SplataloguePong messages.

	23.1.1

	29/07/21

	Added return_path to ScriptingRequest message.

	24.0.0

	30/07/21

	Added the stokes to SetStatsRequirements, HistogramConfig, and RegionHistogramData messages. Removed the channel from Histogram.

	24.1.0

	12/10/21

	Added platform_strings to RegisterViewerAck message.

	24.2.0

	11/11/21

	Added filter_mode to FileListRequest, CatalogListRequest and RegionListRequest messages; Added Unknown to CatalogFileType.

	25.0.0

	06/12/21

	Added PvRequest, PvResponse, PvProgress, and StopPvCalc messages for PV generator.

	26.0.0

	13/01/22

	Removed grpc_port from RegisterViewerAck message. Renamed GRPC_SCRIPTING to SCRIPTING in ServerFeatureFlags. Removed all references to gRPC in docs.

	26.1.0

	01/03/22

	Added lel_expr to OpenFile message.

	26.2.0

	19/04/22

	Added rest_freq to SaveFile message.

	27.0.0

	21/04/22

	Added FittingRequest and FittingResponse messages for image fitting.

	27.1.0

	27/04/22

	Added Ptotal, Plinear, PFtotal, PFlinear, and Pangle to PolarizationType enum. Added stokes_indices to StartAnimation message.

	27.2.0

	05/05/22

	Added SetVectorOverlayParameters and VectorOverlayTileData messages. Moved TileData to shared.

	27.3.0

	09/05/22

	Added width to SetSpatialRequirements and LineProfileAxis to SpatialProfile.

	28.0.0

	07/06/22

	Removed spectral line request/response and Splatalogue ping/pong messages.

	28.1.0

	17/06/22

	Added region_id and fov_info to FittingRequest message.

	28.2.0

	08/09/22

	Added spectral_range, reverse, and keep to PvRequest message.

	28.3.0

	30/11/22

	Added keep to MomentRequest message.

	28.4.0

	05/12/22

	Added additional fields to FittingRequest and FittingResponse for generating model and residual images. Added FittingProgress and StopFitting messages for updating progress and canceling tasks.

	28.5.0

	10/01/23

	Added axes numbers to FileInfoExtended message for dealing with swapped axes image cubes.

	28.6.0

	17/03/23

	Added additional fields to FittingResponse for image fitting background offset as a free parameter.

	28.7.0

	23/03/23

	Added annotation regions to RegionType and added additional style parameters in AnnotationStyle to RegionStyle.

	28.8.0

	14/04/23

	Added number of bins and pixel bounds to HistogramConfig in SetHistogramRequirements message. Added HistogramConfig to RegionHistogramData message.

	28.9.0

	28/04/23

	Added sub-message PvPreviewSettings to PvRequest and message PvPreviewData to PvResponse for generating a PV preview image. Added StopPvPreview to cancel preview image and ClosePvPreview to release preview resources.

	28.10.0

	18/05/23

	Added lel_expr to ImageProperties message.

	28.11.0

	20/06/23

	Added support_aips_beam to FileInfoRequest, OpenFile, and ImageProperties messages.

	28.12.0

	15/08/23

	Added sync_id and tile_count to RasterTileSync and RasterTileData messages.

	28.13.0

	23/08/23

	Added integrated flux to FittingResponse message.

Versioning

	Major version change (1.2.3 -> 2.0.0): this is a breaking change.

	Minor version change (1.2.3 -> 1.3.0): this is added functionality which is optional and non-breaking.

	Patch (1.2.3 -> 1.2.4): this is a change which does not affect functionality (e.g. a typo fix in a comment, or a changed field name).

Some legacy changelog entries may not follow this approach. Only changes to the protocol buffer source files should be recorded here; changes only to this documentation do not require a version bump.

Contents:

	1. Introduction

	2. Context

	3. Behaviour
	3.1. Connection

	3.2. File browsing

	3.3. Data cube navigation
	3.3.1. Zooming and panning

	3.3.2. Channel navigation

	3.3.3. Animation

	3.4. Changing view parameters

	3.5. Region selection and statistics
	3.5.1. Region creation

	3.5.2. Cursor updates

	3.5.3. Region requirements

	3.5.4. Per-cube histograms

	3.6. Data streaming

	3.7. User preferences

	3.8. Resume the session

	3.9. Catalog overlay
	3.9.1. Sequence Diagrams

	3.10. Moments generator

	3.11. Image fitting

	4. Layer descriptions
	4.1. Application Layer

	4.2. Presentation layer

	4.3. Session Layer

	4.4. Transport Layer

	5. Protocol buffer reference
	5.1. Messages
	5.1.1. AddRequiredTiles

	5.1.2. AnimationFlowControl

	5.1.3. CatalogFileInfoRequest

	5.1.4. CatalogFileInfoResponse

	5.1.5. CatalogFilterRequest

	5.1.6. CatalogFilterResponse

	5.1.7. CatalogListRequest

	5.1.8. CatalogListResponse

	5.1.9. CloseCatalogFile

	5.1.10. CloseFile

	5.1.11. ClosePvPreview

	5.1.12. ConcatStokesFiles

	5.1.13. ConcatStokesFilesAck

	5.1.14. ContourImageData

	5.1.15. ContourSet

	5.1.16. ErrorData

	5.1.17. ExportRegion

	5.1.18. ExportRegionAck

	5.1.19. FileInfoRequest

	5.1.20. FileInfoResponse

	5.1.21. FileListRequest

	5.1.22. FileListResponse

	5.1.23. FittingProgress

	5.1.24. FittingRequest

	5.1.25. FittingResponse

	5.1.26. ImageProperties

	5.1.27. ImportRegion

	5.1.28. ImportRegionAck

	5.1.29. MomentProgress

	5.1.30. MomentRequest

	5.1.31. MomentResponse

	5.1.32. OpenCatalogFile

	5.1.33. OpenCatalogFileAck

	5.1.34. OpenFile

	5.1.35. OpenFileAck

	5.1.36. PvPreviewData

	5.1.37. PvProgress

	5.1.38. PvRequest

	5.1.39. PvResponse

	5.1.40. RasterTileData

	5.1.41. RasterTileSync

	5.1.42. RegionFileInfoRequest

	5.1.43. RegionFileInfoResponse

	5.1.44. RegionHistogramData

	5.1.45. RegionListRequest

	5.1.46. RegionListResponse

	5.1.47. RegionStatsData

	5.1.48. RegisterViewer

	5.1.49. RegisterViewerAck

	5.1.50. RemoveRegion

	5.1.51. RemoveRequiredTiles

	5.1.52. ResumeSession

	5.1.53. ResumeSessionAck

	5.1.54. SaveFile

	5.1.55. SaveFileAck

	5.1.56. ScriptingRequest

	5.1.57. ScriptingResponse

	5.1.58. SetContourParameters

	5.1.59. SetCursor

	5.1.60. SetHistogramRequirements

	5.1.61. SetImageChannels

	5.1.62. SetRegion

	5.1.63. SetRegionAck

	5.1.64. SetSpatialRequirements

	5.1.65. SetSpectralRequirements

	5.1.66. SetStatsRequirements

	5.1.67. SetVectorOverlayParameters

	5.1.68. SpatialConfig

	5.1.69. SpatialProfileData

	5.1.70. SpectralConfig

	5.1.71. SpectralProfileData

	5.1.72. StartAnimation

	5.1.73. StartAnimationAck

	5.1.74. StatsConfig

	5.1.75. StokesFile

	5.1.76. StopAnimation

	5.1.77. StopFileList

	5.1.78. StopFitting

	5.1.79. StopMomentCalc

	5.1.80. StopPvCalc

	5.1.81. StopPvPreview

	5.1.82. VectorOverlayTileData

	5.2. Sub-messages
	5.2.1. AnimationFrame

	5.2.2. AnnotationStyle

	5.2.3. AxesNumbers

	5.2.4. Beam

	5.2.5. CatalogFileInfo

	5.2.6. CatalogHeader

	5.2.7. CatalogImageBounds

	5.2.8. ColumnData

	5.2.9. Coosys

	5.2.10. DirectoryInfo

	5.2.11. DoubleBounds

	5.2.12. DoublePoint

	5.2.13. FileInfo

	5.2.14. FileInfoExtended

	5.2.15. FilterConfig

	5.2.16. FloatBounds

	5.2.17. GaussianComponent

	5.2.18. HeaderEntry

	5.2.19. Histogram

	5.2.20. HistogramConfig

	5.2.21. ImageBounds

	5.2.22. IntBounds

	5.2.23. LineProfileAxis

	5.2.24. ListProgress

	5.2.25. MatchedFrameList

	5.2.26. Point

	5.2.27. PvPreviewSettings

	5.2.28. RegionInfo

	5.2.29. RegionStyle

	5.2.30. SpatialProfile

	5.2.31. SpectralProfile

	5.2.32. StatisticsValue

	5.2.33. TileData

	5.3. Enums
	5.3.1. CatalogFileType

	5.3.2. ClientFeatureFlags

	5.3.3. ColumnType

	5.3.4. ComparisonOperator

	5.3.5. CompressionType

	5.3.6. CoordinateType

	5.3.7. EntryType

	5.3.8. ErrorSeverity

	5.3.9. EventType

	5.3.10. FileFeatureFlags

	5.3.11. FileListFilterMode

	5.3.12. FileListType

	5.3.13. FileType

	5.3.14. FittingSolverType

	5.3.15. Moment

	5.3.16. MomentAxis

	5.3.17. MomentMask

	5.3.18. PointAnnotationShape

	5.3.19. PolarizationType

	5.3.20. ProfileAxisType

	5.3.21. RegionType

	5.3.22. RenderMode

	5.3.23. ServerFeatureFlags

	5.3.24. SessionType

	5.3.25. SmoothingMode

	5.3.26. SortingType

	5.3.27. StatsType

	5.3.28. TextAnnotationPosition

1. Introduction

The CARTA application is designed in a server-client model, with the backend (written in C++) communicating with the frontend (Web-based, using HTML and JavaScript web frameworks) through an interface defined in this document. While CARTA is required to support a number of file formats (FITS, CASA, HDF5 and Miriad), throughout the document, nomenclature will be defaulted to FITS files, such as when referring to multiple HDUs in a file, and header entries.

Throughout this document, things that require some clarity, or are not finalised are commented on in this font style.

2. Context

There are two distinct usage scenarios for frontend-backend configuration in CARTA. Firstly, when used as a desktop application, the frontend and backend both run locally. The backend is run as an application that communicates with the frontend, which is presented to the user as a desktop application in the form of an Electron-wrapped web view [1 [https://electronjs.org/]].

The second usage scenario is that of a remote viewer, where the backend is running on a remote server, while the frontend is loaded in the user’s browser of choice (as long as that choice is Chrome, Firefox, Safari or Edge) by visiting a URL associated with the remote server. A third possible configuration is running the desktop Electron application, while connecting to a specific server IP for remote data. This is not a high priority, as most usage scenarios would be better handled through accessing the frontend through a remote URL.

In both of these scenarios, communication between the frontend and backend takes place over a standard WebSocket [2 [https://en.wikipedia.org/wiki/WebSocket]] communication channel, with message formats defined using protocol buffers [3 [https://developers.google.com/protocol-buffers/]], based on the message structures defined in Section 4.1.

Image data is sent to the frontend as either uncompressed or compressed floating point data. The frontend can request which type of data is sent from the backend, which compression library to use, and what compression quality to use. Two lossy floating-point compression libraries are supported in the ICD: ZFP [4 [https://github.com/LLNL/zfp]] and SZ [5 [https://github.com/disheng222/SZ]] (although SZ is not implemented at this point on either the frontend or backend). A general investigation of the compression performance of these two libraries shows that ZFP is consistently faster, while SZ offers slightly better compression ratios at the expense of compression and decompression speed. The current implementation of the SZ library is not thread safe, meaning that compression on the backend would have to be implemented sequentially. Note that, due to the frontend’s use of web workers to decompress data, this limitation is overcome, as each web worker operates in a separate execution space. ZFP should be preferred when network bandwidth is sufficient. In the case of a desktop application, uncompressed data or very high quality ZFP compressed data should be favoured. When using uncompressed data, the FP32 floating point data is copied directly to and from the uint8 array specified by TileData (using 4 uint8 entries per 32-bit floating point entry).

Contour data is streamed as either uncompressed floating points, or compressed decimated fixed-point data. Contour data is losslessly compressed using the Zstandard [6 [https://github.com/facebook/zstd]] library, after being decimated to a fixed-point value. Vector overlay data follows the same approach as image data.

3. Behaviour

Contents:

	3.1. Connection

	3.2. File browsing

	3.3. Data cube navigation
	3.3.1. Zooming and panning

	3.3.2. Channel navigation

	3.3.3. Animation

	3.4. Changing view parameters

	3.5. Region selection and statistics
	3.5.1. Region creation

	3.5.2. Cursor updates

	3.5.3. Region requirements

	3.5.4. Per-cube histograms

	3.6. Data streaming

	3.7. User preferences

	3.8. Resume the session

	3.9. Catalog overlay
	3.9.1. Sequence Diagrams

	3.10. Moments generator

	3.11. Image fitting

3.1. Connection

Connection takes place via the WebSockets protocol, and is initiated as soon as the frontend page is successfully loaded. Upon connection, the frontend registers itself to the backend using the REGISTER_VIEWER message and retrieves a new session ID, server capabilities and user preferences through REGISTER_VIEWER_ACK. It then requests the list of files in the default directory. If the connection is dropped, the frontend re-registers itself to the server, but passes through the original session ID. The server should attempt to resume this session, but if not possible, will generate a new session ID for the client. In addition to the session ID, the frontend can pass through an optional API key, which can be used to determine basic permissions and user-related settings.

A connection heartbeat is established by the server-initiated ping/pong sequence defined by the WebSocket protocol. In addition to this, a client-initiated ping/pong sequence is produced by empty messages being sent by the frontend periodically. The backend keeps track of the time since each connected client last initiated the ping/pong sequence, and makes timeout decisions based on this value.

When the frontend is intentionally closed, by closing the associated app or web page, the frontend closes the WebSocket connection gracefully, and the backend can then remove the associated session. When the frontend is closed in error, or the backend determines that a connection is timed out, the backend should maintain the session for an appropriate period, so that it can be resumed when the frontend reconnects. The frontend should attempt to reconnect with the same session ID when a connection is dropped. If the backend responds with a session type set to RESUMED, the frontend will attempt to resume the session by sending a list of files, along with their associated regions in a RESUME_SESSION message.

[image: _images/7bde6f036735f59236d4db329cb401e58bc6361ee1b363ea6b17c64d3e394877.svg][image: _images/66f12dac13eedf99431e9126be0c8a127542561fc80703f28863ce3f209fe424.svg]If the scripting interface is enabled, the backend HTTP server accepts scripting requests, acting as a proxy between a scripting client, such as a python package, and the frontend. The frontend parses a scripting command from each SCRIPTING_REQUEST message sent by the backend, executes the required code, and responds with a SCRIPTING_RESPONSE message, which includes the success state of the command, as well as a possible response in JSON format. Each incoming scripting request includes a unique ID, which is passed back in the scripting response, so that the backend can uniquely match scripting requests to their responses.

3.2. File browsing

The file browser displays a list of files in the selected directory, along with some basic information on each file (type, size) and a list of subdirectories. If a file contains multiple HDUs (or equivalent), a list of HDU names is included. If a file is selected in the file browser, additional information is shown. A specific HDU of a file can be selected. When a subdirectory is selected, the file list is fetched for that subdirectory. When a file is loaded, the default image view is requested. A file can be loaded as a raster or contour image (not currently implemented), and can be appended to the current list of open files, or can replace all open files, in which case the frontend must first close all files using the CLOSE_FILE message with file_id = -1. Individual open files can be removed from the file list by calling CLOSE_FILE with an appropriate file_id field.

[image: _images/01ea8e9475918d9da5423cb99882279acd849d5e4ebff2f2559b2bfcec25518e.svg][image: _images/2f9870eadaa12737c48b9bae7c17ce181cd3b5f87409b3280c11430210623188.svg][image: _images/2ec37245bda19309de9217dfeab5ce2542d74ebb3927995a06754d4e90df1e19.svg][image: _images/6c7a80f94a2178d2b14224aae2845c51f4295a223560843108878f2e4923219c.svg]

3.3. Data cube navigation

The frontend can change the displayed channel and Stokes parameter by issuing the SET_IMAGE_CHANNELS command. When an image is opened, the frontend will send a SET_IMAGE_CHANNELS with the first channel and Stokes parameter. The frontend subscribes to all RASTER_TILE_DATA messages.

Tiled rendering splits the image into individual square tiles (defaulting to 256 pixels in width), and renders the image progressively as tiles arrive from the backend. This is more efficient when exploring a large image, as it reuses data when panning and zooming around the image. Images are downsampled by a power of 2.

In addition, contour rendering can be used on files. The contours for an entire channel are generated when the frontend sends the SET_CONTOUR_PARAMETERS command. The frontend subscribes to all CONTOUR_IMAGE_DATA messages. Currently, contour renders are automatically updated when the user changes channel or plays an animation. Contours are delivered in separate chunks by the backend, so that the user can see the contours as they are delivered to the frontend, and can get an idea of how long the contour fetching will take.

3.3.1. Zooming and panning

The frontend can request specific tiles of an image to be delivered. Tiles are specified using the widely used a tiled web map [https://en.wikipedia.org/wiki/Tiled_web_map] convention (commonly used in GIS and online image viewer software). Each tile is defined by three coordinates: The layer, x and y coordinates. The zeroth layer consists of the entire image, down-sampled until it is stored in a single tile, with both width and height less than or equal to a chosen tile size (defaulting to 256 pixels, but this may increase in future to 512 pixels for large format screens). The tile size must be a multiple of four, due to the ZFP algorithm’s block size. Each subsequent layer doubles in width and height, to the point where the highest layer (N) contains the entire image in full resolution, split into fixed-size tiles (tiles along the right and top edges of the image will have reduced width and height respectively).

Tile coordinates (layer, x and y) are encoded into a single 32-bit integer before sending. There are two primary reasons for this:

	Using a struct as a key in a map on either frontend or backend would be more complicated, and require a custom hash function. JavaScript Map objects do not support this. Storing tiles within a map-of-maps-of-maps would be less efficient.

	Encoding and decoding an array of structs in a protocol buffer object would be less efficient in terms of CPU time and network storage

The encoded integer consists of:

	12 bits for the X and Y coordinate. This limits the implementation to at most 4096 tiles along either axis. With a default tile size of 256 pixels, this means images must be smaller than 1.04 million pixels in width and height.

	7 bits for the layer coordinate. This limits the implementation to 128 layers. However, this limitation is artificial, since at most 12 layers will be required, given the above limitation of 4096 tiles

	1 bit left over, because JavaScript bit shifting is done on signed integers, rather than unsigned

Encoding and decoding is a simple and lightweight process using some bit shifting. A single line JavaScript function to encode is:

(x, y, layer) => (layer << 24) | (y << 12) | x;

When a user zooms or pans, the frontend sends the ADD_REQUIRED_TILES command to the backend. The frontend may debounce, throttle or delay sending tiles to the backend, in order to optimise delivery and avoid sending stale tiles. The order of the list of tiles supplied to ADD_REQUIRED_TILES determines the order in which the backend delivers tiles. If subsequent ADD_REQUIRED_TILES messages arrive while the backend is still delivering tiles, the most recent tile list is prioritised.

Another route for optimisation available to the frontend is REMOVE_REQUIRED_TILES, which allows the frontend to explicitly indicate that certain tiles are no longer required. If any of these tiles are yet to be delivered to the frontend, the backend can optimise tile delivery by removing them from the queue of titles to be delivered.

Tile data is delivered by the backend using the RASTER_TILE_DATA stream. This allows the backend to send one or more raster tiles with the same compression format and quality to the frontend. Each time a tile is delivered to the frontend, the image is re-rendered.

[image: _images/bd4c16b94f5f653e76711fbbaa821ee3795d1b78dd10f6d19a3de444cc2ee1eb.svg]

3.3.2. Channel navigation

When changing channels via a SET_IMAGE_CHANNELS message, the frontend includes an initial list of required tiles. These tiles are then delivered individually by the backend. Unlike the case when zooming and panning, the frontend will wait for all required tiles to be delivered before displaying an image when switching channels. When receiving a SET_IMAGE_CHANNELS message, the backend will also send the new channel histogram via the REGION_HISTOGRAM_DATA stream.

In general, one image view command will correspond to a subsequent image data stream message. However, changing the image channel will result in a subsequent image data stream message, as well as any relevant updated statistics, histograms or profile data.

[image: _images/a8299a420dd66fdbfdb9aa06ce220ae606324c222c09faf581bf531e161f74fd.svg]

3.3.3. Animation

An animation can be played back by issuing the START_ANIMATION command. This command encapsulates all the different animation stepping and bounds parameters, in order to allow the backend to perform frame calculations and deliver image data to the front. After the the START_ANIMATION command has been issued, the backend sends required images and analysis results of the active and spectrally matched images to the frontend at a regular interval. When the user stops an animation, the frontend sends the STOP_ANIMATION command, which includes information on the current image’s channels, so that the backend can be sure that the frontend channel state is the same as that of the backend. If the last sent frame does match the frontend channel state, the backend adjusts channels again. In order to prevent the backend from sending too many animation frames, some basic flow control is provided through ANIMATION_FLOW_CONTROL message. This is sent from the frontend to the backend to indicate the latest frame of the active image received, preventing the backend from queuing up too many frames. The START_ANIMATION command includes an ADD_REQUIRED_TILES sub-message, specifying the required tiles and compression type to be used in the animation. The backend includes an animation ID field in START_ANIMATION_ACK in order to allow the frontend to differentiate between frames of previous animations and the latest animation.

[image: _images/90607e8f9b56ace63a8e90a09ee754e9e7e8d88d41bee04707404d015cd8cfa8.svg]Active and visible spectrally matched images are sent as tiled data. For each image, the backend first sends the RASTER_TILE_SYNC message with end_sync false. Tiled data are then sent with RASTER_TILE_DATA. After all the tiles are sent, the backend sends the RASTER_TILE_SYNC message again with end_sync true. In order to keep the image view channel and full image histogram synchronised, REGION_HISTOGRAM_DATA messages are sent to the frontend, containing the channel histogram for the new channel. During animation playback, each animation step will result in image data stream messages, as well as any relevant analytics updates, including SPATIAL_PROFILE_DATA, REGION_STATS_DATA, CONTOUR_IMAGE_DATA, and VECTOR_OVERLAY_TILE_DATA. If zooming or panning occurs during animation, or if an image becomes visible or invisible in the image view panel, ADD_REQUIRED_TILES messages of the frames are sent to the backend, updating the requirements. These new requirements are used in the next frame generated by the backend.

3.4. Changing view parameters

Contours must be re-calculated by the server when the contour parameters (levels, mode or smoothness) change. However, as contour rendering is done on the frontend, any changes to the contour rendering parameters (visibility, opacity, thickness, colour, line style) do not require any server interaction.

[image: _images/6dfb28dd5e9c0366ae0602661f647ba3215c34ba58f05403b67af1e4fc897cca.svg]Similarly for raster images: As all the rendering is done on the frontend, any changes to the raster rendering configuration (colour map, range, scaling type) do not require any interaction between frontend and backend:

[image: _images/ecfddc8ed77a156c41c28f49b4adb3357ad4a6f9c32d05dc087093ca66a49745.svg]Vector overlay rendering requires image data for both the vector angle (normally calculated from polarization angle PA) and length/intensity (normally calculated from polarized intensity PI). The image data is first downsampled on the backend using block downsampling with an even block width, and then masked with a threshold value. Adjusting the block width or threshold value will require the data to be recalculated and streamed by the backend. The backend streams data tile-by-tile.

[image: _images/a989420e39e81bb0f07c43c6194f93b36bd33280bb549b41b59873da12dcdf19.svg]

3.5. Region selection and statistics

3.5.1. Region creation

Regions can be created, removed and updated. Any profiles or statistics data associated with a region flow from the backend to the server whenever an update is required. Updates may be required (a) when a region is created or updated; (b) when the image channel is explicitly switched to a different channel or Stokes parameter using SET_IMAGE_CHANNELS or (c) when an animation playback results in the image view being updated implicitly.

In addition, the backend may choose to provide partial region statistics or profile updates if the calculations are time-intensive. When creating a region, the region_id field of SET_REGION is less than zero: the backend generates the unique region_id field, and returns it in the acknowledgement message.

[image: _images/8eb6608937bf2f87185ed9f376e81aebd4c4f0f15608848fb4077a16a0f99c8a.svg][image: _images/7a29982a5a1c282d163eb548cd8c3112faf6df1ad688ccb14e3c4b250f2df38a.svg]

3.5.2. Cursor updates

As viewing profiles based on the position of the cursor is a very common use case, a separate control message is used specifically for this purpose, and does not require the definition of any additional region. The cursor-based region has a region_id field value of zero, and is defined as a point-type region. The X and Y coordinates of the region can only be updated via the SET_CURSOR command, while the channel and Stokes coordinates are automatically updated by the backend whenever the image view is changed.

[image: _images/cfb7f5eb1fd2236f962abd21be8a2b3b92af9c20547e25cd5e681b2fc4418b19.svg]

3.5.3. Region requirements

Each region can have analytical data requirements associated. For example, the user may wish to display the Z-profile of a particular region, while displaying the X- and Y-profiles of the cursor region. Whenever an analytical widget is added or removed in the frontend, the frontend must update the requirements associated with that region using the relevant command:

	SET_SPECTRAL_REQUIREMENTS for spectral profiler widgets

	SET_SPATIAL_REQUIREMENTS for spatial profiler widgets

	SET_STATS_REQUIREMENTS for stats info displays

	SET_HISTOGRAM_REQUIREMENTS for histograms plot widgets

After each requirements update, the backend should then assess the new requirements to determine whether any new or updated analytical data needs to be sent to the frontend. As an example: adding a spectral profile widget on the frontend and setting its requirements will mean that the region it is associated with now has an additional requirement, and the frontend requires new data. As such, the backend will calculate the required spectral profile and send it using SPECTRAL_PROFILE_DATA. However, removing the spectral profile widget on the frontend will now remove that requirement, but no new SPECTRAL_PROFILE_DATA message is needed from the frontend.

[image: _images/094a606827485365601ea5d99f1359161b418ca09ffaf994af9fc3d4cf730aae.svg][image: _images/adf8147ce450e28310a1177cb0af239584f78fd354c15e5e840e385ec1bddb07.svg]If a region’s parameters are changed, the backend determines which calculations need to be updated, based on the region’s requirements set, and any required data is sent to the frontend through a new data stream message:

[image: _images/f0bc3a6ae4c2288efbda44530a6f6b717a83dd77b86a8b7957273d7f52429575.svg]When all files are closed, regions associated with that file are removed, both on the frontend and on the backend. When only a single frame is closed, the regions persist.

[image: _images/d184251c5fb36f19c5345eaf1ca376f19d3f48b84c5918f47e9a375d7ef99006.svg]

3.5.4. Per-cube histograms

As users may wish to use a histogram generated from the entire cube to choose their render bounds, the backend needs to support the calculation of a histogram on a per-cube as well as per-slice basis. A per-cube histogram is requested through the SET_HISTOGRAM_REQUIREMENTS message, with the region ID set to -2. As per-cube histograms may take a long time to calculate, there are additional requirements over and above per-slice histograms.

The backend should deliver results from the histogram calculation at regular intervals. As the histogram. As the histogram calculation consists of a large number of separable calculations (reading through individual slices to determine min/max, reading through individual slices to fill the histogram bins), the backend can split the calculation up into smaller tasks, and deliver cumulative results to the frontend.

[image: _images/598c9eabe15664bc75a17c7a9dde843d178cdf067aafc0f9c4170687aafb004b.svg]The backend should be able to cancel the histogram calculation when receiving a specific message from the frontend. By sending a second SET_HISTOGRAM_REQUIREMENTS message to the backend, with the region ID set to -2 and an empty histogram list, the frontend can indicate to the backend that the per-cube histogram is no longer required, and the backend can cancel the calculation.

[image: _images/8ceb74aaa751bf821d5c708bc1a11f071bb92423c70bdbef5680bee7638991ab.svg]

3.6. Data streaming

While some data flows can be described by a simple request/response approach, such as retrieving file lists or file information, other data flows require an asynchronous data stream approach. This need arises from situations where a single state change command corresponds to more than one response from the backend. For example, changing image channel would require each spatial profile associated with the active image channel to be updated, possibly resulting in more than one SPATIAL_PROFILE_DATA messages. Moving a region would require updating any analytics associated with the region. It is the backend’s responsibility to correctly determine which analytic data needs to be updated whenever a control message is sent. It is essential that the backend only recalculates and sends data when needed. In order to do this, the backend must keep track of any updates to region requirements, and use these requirements to determine whether updates are needed. Region requirements will reflect the current frontend UI configuration. Changes to the frontend UI configuration (such as changing between “average” and “max” on a spectral profile widget) will result in new region requirements being sent to the backend, which will then be processed, resulting in new data being sent to the frontend when required.

Some examples of possible resultant data streams for control messages are given below:

	SET_IMAGE_CHANNELS: Changing either the channel or the Stokes parameter would require new image data to be sent, for both raster and contour images. Changing from one channel to another in the same Stokes cube could result in histograms, spatial profiles or region stats to require updating. Changing to a new stokes cube could also require spectral profiles to be updated. These updates will depend on the defined regions and defined region requirements.

	START_ANIMATION: Starting an animation will require new image data for each frame. In addition, since the animation playback may be across file, Stokes or channel parameters, the same data streams as those arising from SET_IMAGE_CHANNELS can occur.

	SET_CURSOR: Updating the cursor position is a special case of updating a region. As the cursor position is a point region, only spectral data and spatial data can require an update.

	SET_REGION: Creating a region will not result in any data streams, as the region’s requirements will be empty by default. However, updating a regions parameters (other than region name) could result in spatial profiles (for open regions), spectral profiles, region stats and histograms (for closed and point regions) to be updated.

	SET_STATS_REQUIREMENTS: Updating stats requirements for a region can result in region stats data being updated.

	SET_HISTOGRAM_REQUIREMENTS: Updating histogram requirements for a region (either by updating the channel required for the histogram or by changing the histogram bin number) can result in histogram data being updated.

	SET_SPATIAL_REQUIREMENTS: Updating spatial profile requirements for a region can result in spatial profile data being updated.

	SET_SPECTRAL_REQUIREMENTS: Updating spectral profile requirements for a region (either by changing the coordinate required, such as “Qz” or “Uz”, or by changing the statistic type used to generate the profile) can result in spectral profile data being updated.

	SET_CONTOUR_PARAMETERS: Updating contour parameters for a file will result in new contour image data being required.

3.7. User preferences

If the backend supports the USER_PREFERENCES server feature flag, the frontend will expect all the user’s preferences (default settings, color maps, interaction preferences and others) to be included in the REGISTER_VIEWER_ACK message. Changes to the user preferences can be made by the frontend through the SET_USER_PREFERENCES control message. Each preference to be updated, along with the updated value, is stored as a map. User preference entries can be removed from the server by sending a SET_USER_PREFERENCES message with a map of preference keys with empty values.

If the backend supports the USER_LAYOUTS server feature flag, the frontend will expect all the user’s custom UI layouts to be included in the REGISTER_VIEWER_ACK message. Changes to individual layouts (adding, updating or removing) are updated through the SET_USER_LAYOUT control message.

3.8. Resume the session

The basic idea is that, when the frontend reconnects to the backend (with REGISTER_VIEWER), it would also send some state information, such as:

	list of open files, along with their IDs and the current channels and stokes

	list of regions for each file, along with all their properties

Users can choose whether to resume the session while reconnected. If yes, then the backend would then reconstruct the session based on the frontend’s message, by opening files again, changing to the appropriate channels, and so on, and then adding the regions and then set requirements.

There are two use cases for resuming with an existing session ID, and a third where resume is not possible.

	Backend is restarted, frontend connects, frontend sends state information.

	Frontend sends REGISTER_VIEWER with session_id > 0.

	Restarted backend has no session_ids, REGISTER_VIEWER_ACK sets session_type=RESUMED. Backend creates new Session with given session_id (On Connect).

	Frontend sends state to backend, i.e., sends RESUME_SESSION message with state information, backend responds with RESUME_SESSION_ACK.

	Backend sets state in newly-created Session.

	Network connection drops, frontend reconnects to backend with existing session id.

	While the network connection drops. It seems the uWebsocket has a default timeout setting for 15,000 ms (need to verify). For the new version of uWebsocket, we can set the timeout via the variable “.idleTimeout”. On Disconnect is called after the timeout and then backend deletes Session.

	Frontend sends REGISTER_VIEWER with session_id > 0.

	Backend has session_id, REGISTER_VIEWER_ACK sets session_type=RESUMED. Frontend sends state to backend with RESUME_SESSION, and backend responses with RESUME_SESSION_ACK.

	Backend sets state in existing Session, requirements trigger sending data streams (possibly cached).

	Frontend is restarted, has no existing session id so cannot resume even though backend continues.

	Frontend sends REGISTER_VIEWER with session_id = 0.

	Backend creates a new Session, REGISTER_VIEWER_ACK sets session_type=NEW.

	The Session will be deleted immediately while the frontend is restarted.

3.9. Catalog overlay

3.9.1. Sequence Diagrams

Catalog file list

[image: _images/4dad39af5f67d5d90b091cf27df0dc77c8b164f50dc7424b757809896d91b597.svg]Catalog file info

[image: _images/cb10e66e330c812763d93ce21adfc141140db826bf75968c1280d3dc4db6c911.svg]Opening catalog file

[image: _images/44af21cb8d06a5c59182fbff8fbc50aa115133b1d4b8f9ab195f045b5d8153db.svg]Catalog file data stream

[image: _images/bbe28847cfa1af226d95562804f11d5f95ce2aa48568a2c7e647fcc8d3a1b1a0.svg]Closing catalog file

[image: _images/646ebec04e4f4be50d9743de517f65489278ebd43f738fe0b84809af8b2d286f.svg]

3.10. Moments generator

The moment generator should allow users to generate moment images from a cube interactively with the GUI. The interactivity should happen with a spectral line profile plot as usually we need information from spectral line profiles (line spectral/intensity distributions) to decide the control parameters of the moment generator. This could happen with the existing spectral profile widget, or, with a dedicated moment generator widget/dialogue with a spectral line profile plot.

CARTA should provide the following kinds of moments (sensible name in bold) as supported by CASA:

	moments = -1 - mean value of the spectrum

	moments = 0 - integrated value of the spectrum

	moments = 1 - intensity weighted coordinate; traditionally used to get “velocity fields”

	Moments = 2 - intensity weighted dispersion of the coordinate; traditionally used to get “velocity dispersion”

	moments = 3 - median value of the spectrum

	moments = 4 - median coordinate

	moments = 5 - standard deviation about the mean of the spectrum

	moments = 6 - root mean square of the spectrum

	moments = 7 - absolute mean deviation of the spectrum

	moments = 8 - maximum value of the spectrum

	moments = 9 - coordinate of the maximum value of the spectrum

	moments = 10 - minimum value of the spectrum

	moments = 11 - coordinate of the minimum value of the spectrum

The newly generated moment images (multiple moments can be generated at the same time) should be loaded and appended (and match spatially) in CARTA. CARTA should also support the capability to export the images as files in the following formats:

	CASA image format

	FITS image format

	HDF5-IDIA schema image format (TBD; post v1.4)

We create temporary moment images in the backend. Then if users want to keep the results, the “save image” option in the file menu should be used where filename and file type can be defined. If users don’t do the “save image” step, those images should be deleted when the session is closed.

The interactivity with the spectral profile widget should include the following:

	Text fields to specify spectral ranges to generate moments. This includes:

	Channel

	Velocity

	Frequency

	Stokes

These text fields (except Stokes) are linked to the selection via the cursor directly on the spectral plot. Users can drag on the spectral plot to define a range in the spectral axis.

	Text fields to define masks for the intensity values. Users can define a range of intensity values to be included in the moment calculations. For example, usually we will apply a threshold (e.g., >= 5-sigma) to the cube to compute moment 1 and moment 2. These text fields are linked to the selection via the cursor directly on the spectral plot. Users can drag on the spectral plot to define thresholds for moments.

As image cubes might be extremely large, the moment generator in CARTA should support an accurate progress bar (CASA provides “multiple” 0-100% progress bars which is misleading and does not provide useful information) and most importantly, the ability of cancellation.

Sequence diagrams for setting image moments and stopping moments calculation are shown below:

[image: _images/af84ddcf731abc04f41536444021d94055be169f2a5b1b5c032c48f8c96a3a01.svg][image: _images/c0a097221f81aea4b8b846851d8f94cddcd0a3d80a9ec9eb1c7b2081795a6102.svg]

3.11. Image fitting

Users can fit multiple 2D Gaussian components to the selected file with the image fitting widget. Frontend sends FITTING_REQUEST with file_id, region_id, initial_values, and other settings. Backend fits the current channel and polarization of the file. For each fitting iteration, backend sends back FITTING_PROGRESS to update the progress. When the fitting is complete, backend responds with FITTING_RESPONSE.
Users can cancel the requested fitting with the progress widget. Frontend sends STOP_FITTING, and backend sents back FITTING_RESPONSE after the fitting is canceled.
The sequence diagram is shown below:

[image: _images/9432cd2085ef01270d0f57bce36a7e3821d2d6b0698234dbbd16299d7f7eb9bb.svg]

4. Layer descriptions

Contents:

	4.1. Application Layer

	4.2. Presentation layer

	4.3. Session Layer

	4.4. Transport Layer

4.1. Application Layer

Interface communication messages fall into three overall categories:

	Control messages (along with any associated acknowledgement responses), which are used to modify the state of the backend from the frontend. Example of this would be starting a new session, moving the cursor or updating region parameters. Each message from the frontend correspond to zero or one acknowledgement response from the backend. Message names for this category follow the naming convention MESSAGE_NAME and MESSAGE_NAME_ACK

	Request messages (along with the required responses), which are used to explicitly request information from the backend without explicitly changing the backend state. Examples of this would be requesting a file list. The frontend will wait for a response for each request of this type, and callbacks or promises will be used to execute code based on the returned response. As each request needs to be mapped to response, messages in this category must include a unique requestID entry. Each message from the frontend in this category corresponds to exactly one response from the backend. Message names for this category follow the naming convention MESSAGE_NAME_REQUEST and MESSAGE_NAME_RESPONSE

	Data flow messages, which flow from the backend to the frontend without an originating front end request. These messages are used for pushing updated data from the backend to the frontend. Examples of this type would be image data, region statistics, profile data and cursor values. The appropriate mechanism for dealing with these messages in the frontend is a observable/subscription-based approach. As there is no request/response combination for messages in this category, there is no prescribed message naming convention.

Implementation note: The backend should implement a command queue for control messages, so that high priority messages are executed first, and cause the backend to disregard any queued-up control messages that are no longer relevant. As an example: moving the cursor across the image will result in a large number of control messages being sent to the backend. Each of these control messages could result in a data flow message with new cursor and profile information, which may take some time to calculate. If a file is closed by the frontend, the backend no longer needs to process any remaining cursor messages relating to this file, and those messages should be removed from the queue.

Message definitions shown in blue are used for frontend ->backend communication. Message definitions shown in red are used for backend->frontend communication.

4.2. Presentation layer

Messages are encoded using the Protocol Buffers message format, which encodes into a binary format. Each message is prepended by a 64-bit structure, consisting of:

	16-bit unsigned integer, used to identify the message type, specified by EventType

	16-bit unsigned integer, used to determine the ICD version

	32-bit unsigned integer, used to uniquely identify requests and corresponding responses. In the case of messages with no corresponding request, such as data stream messages, this integer will be ignored.

Using an 8-byte header prevents byte alignment issues from cropping up. End points decode the message by splitting it into two sections: the 8-byte identifier header and the payload. The identifier header is used to determine which Protocol Buffer definition should be used to decode the payload, and which request corresponds to which response. The ICD version integer (shown at the top of this document) should match the major version of this document (also shown at the top of this document). Any changes to the protocol buffer definitions that would render older backend or frontend implementations incompatible should result in incrementing the ICD version number, and a corresponding change to this document’s version number.

Implementation note: The protocol buffer style guide [6 [https://developers.google.com/protocol-buffers/docs/style]] expects snake_case for field names. The protobuf c++ compiler leaves names in snake_case, while the javascript compiler leaves field names in camelCase. So a field accessed via msg.min_val() in c++ would be accessed by msg.minVal in javascript.

4.3. Session Layer

Sessions will utilise the the WebSocket protocol, as the frontend will be browser-based. Initial session establishment will occur using HTTP, and then be upgraded to WebSocket. Session management will be handled by a session ID being passed from backend to frontend on initial connection. If the frontend is disconnected without closing the session explicitly, the session ID can be passed to the backend upon reconnection to resume the session, although this is not currently supported.

4.4. Transport Layer

The interface will use TCP to communicate. Network layer and below will be dependent on the server/client connection and need not be detailed.

5. Protocol buffer reference

Contents:

	5.1. Messages
	5.1.1. AddRequiredTiles

	5.1.2. AnimationFlowControl

	5.1.3. CatalogFileInfoRequest

	5.1.4. CatalogFileInfoResponse

	5.1.5. CatalogFilterRequest

	5.1.6. CatalogFilterResponse

	5.1.7. CatalogListRequest

	5.1.8. CatalogListResponse

	5.1.9. CloseCatalogFile

	5.1.10. CloseFile

	5.1.11. ClosePvPreview

	5.1.12. ConcatStokesFiles

	5.1.13. ConcatStokesFilesAck

	5.1.14. ContourImageData

	5.1.15. ContourSet

	5.1.16. ErrorData

	5.1.17. ExportRegion

	5.1.18. ExportRegionAck

	5.1.19. FileInfoRequest

	5.1.20. FileInfoResponse

	5.1.21. FileListRequest

	5.1.22. FileListResponse

	5.1.23. FittingProgress

	5.1.24. FittingRequest

	5.1.25. FittingResponse

	5.1.26. ImageProperties

	5.1.27. ImportRegion

	5.1.28. ImportRegionAck

	5.1.29. MomentProgress

	5.1.30. MomentRequest

	5.1.31. MomentResponse

	5.1.32. OpenCatalogFile

	5.1.33. OpenCatalogFileAck

	5.1.34. OpenFile

	5.1.35. OpenFileAck

	5.1.36. PvPreviewData

	5.1.37. PvProgress

	5.1.38. PvRequest

	5.1.39. PvResponse

	5.1.40. RasterTileData

	5.1.41. RasterTileSync

	5.1.42. RegionFileInfoRequest

	5.1.43. RegionFileInfoResponse

	5.1.44. RegionHistogramData

	5.1.45. RegionListRequest

	5.1.46. RegionListResponse

	5.1.47. RegionStatsData

	5.1.48. RegisterViewer

	5.1.49. RegisterViewerAck

	5.1.50. RemoveRegion

	5.1.51. RemoveRequiredTiles

	5.1.52. ResumeSession

	5.1.53. ResumeSessionAck

	5.1.54. SaveFile

	5.1.55. SaveFileAck

	5.1.56. ScriptingRequest

	5.1.57. ScriptingResponse

	5.1.58. SetContourParameters

	5.1.59. SetCursor

	5.1.60. SetHistogramRequirements

	5.1.61. SetImageChannels

	5.1.62. SetRegion

	5.1.63. SetRegionAck

	5.1.64. SetSpatialRequirements

	5.1.65. SetSpectralRequirements

	5.1.66. SetStatsRequirements

	5.1.67. SetVectorOverlayParameters

	5.1.68. SpatialConfig

	5.1.69. SpatialProfileData

	5.1.70. SpectralConfig

	5.1.71. SpectralProfileData

	5.1.72. StartAnimation

	5.1.73. StartAnimationAck

	5.1.74. StatsConfig

	5.1.75. StokesFile

	5.1.76. StopAnimation

	5.1.77. StopFileList

	5.1.78. StopFitting

	5.1.79. StopMomentCalc

	5.1.80. StopPvCalc

	5.1.81. StopPvPreview

	5.1.82. VectorOverlayTileData

	5.2. Sub-messages
	5.2.1. AnimationFrame

	5.2.2. AnnotationStyle

	5.2.3. AxesNumbers

	5.2.4. Beam

	5.2.5. CatalogFileInfo

	5.2.6. CatalogHeader

	5.2.7. CatalogImageBounds

	5.2.8. ColumnData

	5.2.9. Coosys

	5.2.10. DirectoryInfo

	5.2.11. DoubleBounds

	5.2.12. DoublePoint

	5.2.13. FileInfo

	5.2.14. FileInfoExtended

	5.2.15. FilterConfig

	5.2.16. FloatBounds

	5.2.17. GaussianComponent

	5.2.18. HeaderEntry

	5.2.19. Histogram

	5.2.20. HistogramConfig

	5.2.21. ImageBounds

	5.2.22. IntBounds

	5.2.23. LineProfileAxis

	5.2.24. ListProgress

	5.2.25. MatchedFrameList

	5.2.26. Point

	5.2.27. PvPreviewSettings

	5.2.28. RegionInfo

	5.2.29. RegionStyle

	5.2.30. SpatialProfile

	5.2.31. SpectralProfile

	5.2.32. StatisticsValue

	5.2.33. TileData

	5.3. Enums
	5.3.1. CatalogFileType

	5.3.2. ClientFeatureFlags

	5.3.3. ColumnType

	5.3.4. ComparisonOperator

	5.3.5. CompressionType

	5.3.6. CoordinateType

	5.3.7. EntryType

	5.3.8. ErrorSeverity

	5.3.9. EventType

	5.3.10. FileFeatureFlags

	5.3.11. FileListFilterMode

	5.3.12. FileListType

	5.3.13. FileType

	5.3.14. FittingSolverType

	5.3.15. Moment

	5.3.16. MomentAxis

	5.3.17. MomentMask

	5.3.18. PointAnnotationShape

	5.3.19. PolarizationType

	5.3.20. ProfileAxisType

	5.3.21. RegionType

	5.3.22. RenderMode

	5.3.23. ServerFeatureFlags

	5.3.24. SessionType

	5.3.25. SmoothingMode

	5.3.26. SortingType

	5.3.27. StatsType

	5.3.28. TextAnnotationPosition

5.1. Messages

5.1.1. AddRequiredTiles

Source file: control/tiles.proto [https://github.com/CARTAvis/carta-protobuf/blob/dev/control/tiles.proto]

ADD_REQUIRED_TILES
Provides a list of tiles that are required for the specified file

	Field

	Type

	Label

	Description

	file_id

	sfixed32

	
	The file ID that the view corresponds to

	tiles

	sfixed32

	repeated

	The list of tiles required, in encoded coordinate

	compression_type

	CompressionType

	
	The compression algorithm used

	compression_quality

	float

	
	Compression quality switch

5.1.2. AnimationFlowControl

Source file: control/animation.proto [https://github.com/CARTAvis/carta-protobuf/blob/dev/control/animation.proto]

ANIMATION_FLOW_CONTROL
Used for informing the backend of which frames have been received

	Field

	Type

	Label

	Description

	file_id

	sfixed32

	
	

	received_frame

	AnimationFrame

	
	The latest flow control frame received

	animation_id

	sfixed32

	
	The animation ID that the flow control message belongs to

	timestamp

	sfixed64

	
	Timestamp at which the frame was received

5.1.3. CatalogFileInfoRequest

Source file: request/catalog_file_info.proto [https://github.com/CARTAvis/carta-protobuf/blob/dev/request/catalog_file_info.proto]

	Field

	Type

	Label

	Description

	directory

	string

	
	

	name

	string

	
	

5.1.4. CatalogFileInfoResponse

Source file: request/catalog_file_info.proto [https://github.com/CARTAvis/carta-protobuf/blob/dev/request/catalog_file_info.proto]

	Field

	Type

	Label

	Description

	success

	bool

	
	

	message

	string

	
	

	file_info

	CatalogFileInfo

	
	

	headers

	CatalogHeader

	repeated

	

5.1.5. CatalogFilterRequest

Source file: stream/catalog_filter.proto [https://github.com/CARTAvis/carta-protobuf/blob/dev/stream/catalog_filter.proto]

	Field

	Type

	Label

	Description

	file_id

	sfixed32

	
	

	column_indices

	int32

	repeated

	

	filter_configs

	FilterConfig

	repeated

	

	subset_data_size

	sfixed32

	
	

	subset_start_index

	sfixed32

	
	

	image_bounds

	CatalogImageBounds

	
	

	image_file_id

	sfixed32

	
	

	region_id

	sfixed32

	
	

	sort_column

	string

	
	

	sorting_type

	SortingType

	
	

5.1.6. CatalogFilterResponse

Source file: stream/catalog_filter.proto [https://github.com/CARTAvis/carta-protobuf/blob/dev/stream/catalog_filter.proto]

	Field

	Type

	Label

	Description

	file_id

	sfixed32

	
	

	image_file_id

	sfixed32

	
	

	region_id

	sfixed32

	
	

	columns

	map<key: fixed32, value: ColumnData>

	repeated

	

	subset_data_size

	sfixed32

	
	

	subset_end_index

	sfixed32

	
	

	progress

	float

	
	

	filter_data_size

	sfixed32

	
	

	request_end_index

	sfixed32

	
	

5.1.7. CatalogListRequest

Source file: request/catalog_list.proto [https://github.com/CARTAvis/carta-protobuf/blob/dev/request/catalog_list.proto]

	Field

	Type

	Label

	Description

	directory

	string

	
	

	filter_mode

	FileListFilterMode

	
	Filter mode to use when showing the file list

5.1.8. CatalogListResponse

Source file: request/catalog_list.proto [https://github.com/CARTAvis/carta-protobuf/blob/dev/request/catalog_list.proto]

	Field

	Type

	Label

	Description

	success

	bool

	
	

	message

	string

	
	

	directory

	string

	
	

	parent

	string

	
	

	files

	CatalogFileInfo

	repeated

	

	subdirectories

	DirectoryInfo

	repeated

	

	cancel

	bool

	
	

5.1.9. CloseCatalogFile

Source file: control/open_catalog_file.proto [https://github.com/CARTAvis/carta-protobuf/blob/dev/control/open_catalog_file.proto]

	Field

	Type

	Label

	Description

	file_id

	sfixed32

	
	

5.1.10. CloseFile

Source file: control/close_file.proto [https://github.com/CARTAvis/carta-protobuf/blob/dev/control/close_file.proto]

CLOSE_FILE:
Instructs the backend to close a file with a given file ID

	Field

	Type

	Label

	Description

	file_id

	sfixed32

	
	Which “file” slot to close

5.1.11. ClosePvPreview

Source file: control/stop_pv_calc.proto [https://github.com/CARTAvis/carta-protobuf/blob/dev/control/stop_pv_calc.proto]

	Field

	Type

	Label

	Description

	preview_id

	sfixed32

	
	Close the PV preview for the preview viewer id

5.1.12. ConcatStokesFiles

Source file: control/concat_stokes_files.proto [https://github.com/CARTAvis/carta-protobuf/blob/dev/control/concat_stokes_files.proto]

CONCAT_STOKES_FILES:
Requests to concatenate individual stokes images as one and open it.
Backend responds with CONCAT_STOKES_FILES_ACK

	Field

	Type

	Label

	Description

	stokes_files

	StokesFile

	repeated

	Stokes files to be concatenated

	file_id

	sfixed32

	
	File ID for the concatenate image

	render_mode

	RenderMode

	
	The render mode to use. Additional modes will be added in subsequent versions.

5.1.13. ConcatStokesFilesAck

Source file: control/concat_stokes_files.proto [https://github.com/CARTAvis/carta-protobuf/blob/dev/control/concat_stokes_files.proto]

	Field

	Type

	Label

	Description

	success

	bool

	
	Concatenation is successful or not

	message

	string

	
	Error message if not successful

	open_file_ack

	OpenFileAck

	
	Open file acknowledgement for the concatenate file

5.1.14. ContourImageData

Source file: stream/contour_image.proto [https://github.com/CARTAvis/carta-protobuf/blob/dev/stream/contour_image.proto]

CONTOUR_IMAGE_DATA:
Data for an image rendered in contour mode.

	Field

	Type

	Label

	Description

	file_id

	sfixed32

	
	The file ID that the contour image corresponds to

	reference_file_id

	fixed32

	
	The file ID of the reference image that the contour vertices are mapped to

	image_bounds

	ImageBounds

	
	The bounding box in the XY plane corresponding to the image data in pixel coordinates

	channel

	sfixed32

	
	The image channel used to generate the contours

	stokes

	sfixed32

	
	The image stokes parameter used to generate the contours

	contour_sets

	ContourSet

	repeated

	Each contour set consists of the contour level value, as well as a list of coordinates. The start_indices list is used to determine how to subdivide the coordinates list into separate poly-lines when rendering.

	progress

	double

	
	Progress of the contour sets being sent. If this is zero, the message is assumed to contain the entire contour sets

5.1.15. ContourSet

Source file: stream/contour_image.proto [https://github.com/CARTAvis/carta-protobuf/blob/dev/stream/contour_image.proto]

	Field

	Type

	Label

	Description

	level

	double

	
	

	decimation_factor

	int32

	
	

	raw_coordinates

	bytes

	
	

	raw_start_indices

	bytes

	
	

	uncompressed_coordinates_size

	int32

	
	

5.1.16. ErrorData

Source file: stream/error.proto [https://github.com/CARTAvis/carta-protobuf/blob/dev/stream/error.proto]

ERROR_DATA:
Stream of error/warning/info data. This stream is used to present the frontend with additional information on
the state of the backend, and is not used in place of returning success=false on requests or commands.

	Field

	Type

	Label

	Description

	severity

	ErrorSeverity

	
	The severity of the error. Critical errors are reserved for errors that would normally require the user to restart the program or reload the page

	tags

	string

	repeated

	A list of strings describing the error type, that the frontend can interpret and react to. For example, “file_io” or “memory”.

	message

	string

	
	The error message

	data

	string

	
	Accompanying error data. For example, if an error has the “file_io” tag, the frontend would expect the data field to contain the file ID of the offending file.

5.1.17. ExportRegion

Source file: control/export_region.proto [https://github.com/CARTAvis/carta-protobuf/blob/dev/control/export_region.proto]

EXPORT_REGION:
Requests exporting the specified regions to a file on the server.
If directory and file are blank, return file contents for export on client.
Backend responds with EXPORT_REGION_ACK

	Field

	Type

	Label

	Description

	type

	FileType

	
	Required file type

	coord_type

	CoordinateType

	
	Required coordinate type pixel/world

	file_id

	sfixed32

	
	File id for the coordinate system to use

	region_styles

	map<key: sfixed32, value: RegionStyle>

	repeated

	Region ids and style params to export

	directory

	string

	
	Optional directory name of server file

	file

	string

	
	Optional file name of server file

5.1.18. ExportRegionAck

Source file: control/export_region.proto [https://github.com/CARTAvis/carta-protobuf/blob/dev/control/export_region.proto]

EXPORT_REGION_ACK
Response for EXPORT_REGION to indicate success and file contents if on client.

	Field

	Type

	Label

	Description

	success

	bool

	
	Defines whether EXPORT_REGION was successful

	message

	string

	
	Error message (if applicable)

	contents

	string

	repeated

	File contents for client export (one line per string)

5.1.19. FileInfoRequest

Source file: request/file_info.proto [https://github.com/CARTAvis/carta-protobuf/blob/dev/request/file_info.proto]

FILE_INFO_REQUEST:
Requests the file info for a specific file.
Backend responds with FILE_INFO_RESPONSE

	Field

	Type

	Label

	Description

	directory

	string

	
	Required directory name

	file

	string

	
	Required file name

	hdu

	string

	
	Required HDU name (if applicable). If left empty, the first HDU is selected

	support_aips_beam

	bool

	
	Defines whether to support AIPS beam in FITS history headers

5.1.20. FileInfoResponse

Source file: request/file_info.proto [https://github.com/CARTAvis/carta-protobuf/blob/dev/request/file_info.proto]

FILE_INFO_RESPONSE
Response for FILE_INFO_REQUEST.
Gives information on the requested file

	Field

	Type

	Label

	Description

	success

	bool

	
	Defines whether the FILE_INFO_REQUEST was successful

	message

	string

	
	Error message (if applicable)

	file_info

	FileInfo

	
	Basic file info (type, size)

	file_info_extended

	map<key: string, value: FileInfoExtended>

	repeated

	Extended file info (WCS, header info)

5.1.21. FileListRequest

Source file: request/file_list.proto [https://github.com/CARTAvis/carta-protobuf/blob/dev/request/file_list.proto]

FILE_LIST_REQUEST:
Requests the list of available files for a given directory.
Backend responds with FILE_LIST_RESPONSE

	Field

	Type

	Label

	Description

	directory

	string

	
	Required directory name

	filter_mode

	FileListFilterMode

	
	Filter mode to use when showing the file list

5.1.22. FileListResponse

Source file: request/file_list.proto [https://github.com/CARTAvis/carta-protobuf/blob/dev/request/file_list.proto]

FILE_LIST_RESPONSE
Response for FILE_LIST_REQUEST.
Gives a list of available files (and their types), as well as subdirectories

	Field

	Type

	Label

	Description

	success

	bool

	
	Defines whether the FILE_LIST_REQUEST was successful

	message

	string

	
	Error message (if applicable)

	directory

	string

	
	Directory of listing

	parent

	string

	
	Directory parent (null/empty if top-level)

	files

	FileInfo

	repeated

	List of available image files, with file type information and size information.

	subdirectories

	DirectoryInfo

	repeated

	List of available subdirectories, with number of items and modified date

	cancel

	bool

	
	

5.1.23. FittingProgress

Source file: request/fitting_request.proto [https://github.com/CARTAvis/carta-protobuf/blob/dev/request/fitting_request.proto]

FITTING_PROGRESS:
Updates the progress of the requested fitting.

	Field

	Type

	Label

	Description

	file_id

	sfixed32

	
	File ID of the image to be fit

	progress

	float

	
	Progess of the fitting procedure, ranging from 0 to 1

5.1.24. FittingRequest

Source file: request/fitting_request.proto [https://github.com/CARTAvis/carta-protobuf/blob/dev/request/fitting_request.proto]

FITTING_REQUEST:
Requests 2D Gaussian image fitting with given initial values.
Backend responds with FITTING_RESPONSE

	Field

	Type

	Label

	Description

	file_id

	sfixed32

	
	File ID of the image to be fit

	initial_values

	GaussianComponent

	repeated

	Initial values for 2D Gaussian fitting

	fixed_params

	bool

	repeated

	Whether each parameter (in the order of center, amplitude, FWHM, and p.a., and with background offset at the end) should be fixed when fitting

	region_id

	sfixed32

	
	Region ID. Apply field of view if the id is 0; apply the entire image if the id is -1

	fov_info

	RegionInfo

	
	Field of view parameters

	create_model_image

	bool

	
	Whether to create a model image of the fitting result

	create_residual_image

	bool

	
	Whether to create a residual image of the fitting result

	offset

	double

	
	Background level offset

	solver

	FittingSolverType

	
	Solver of the linear least squares system in the fitting

5.1.25. FittingResponse

Source file: request/fitting_request.proto [https://github.com/CARTAvis/carta-protobuf/blob/dev/request/fitting_request.proto]

FITTING_RESPONSE:
Response for FITTING_REQUEST.
Gives results and log of 2D Gaussian image fitting.

	Field

	Type

	Label

	Description

	success

	bool

	
	Defines whether FITTING_REQUEST was successful

	message

	string

	
	Error message (if applicable)

	result_values

	GaussianComponent

	repeated

	Fitting result: values of the fitted parameters

	result_errors

	GaussianComponent

	repeated

	Fitting result: errors of the fitted parameters

	log

	string

	
	Fitting log

	model_image

	OpenFileAck

	
	Fitting result: model image

	residual_image

	OpenFileAck

	
	Fitting result: residual image

	offset_value

	double

	
	Fitting result: background level offset

	offset_error

	double

	
	Fitting result: error of background level offset

	integrated_flux_values

	double

	repeated

	Fitting result: values of integrated flux of each component

	integrated_flux_errors

	double

	repeated

	Fitting result: errors of integrated flux of each component

5.1.26. ImageProperties

Source file: control/resume_session.proto [https://github.com/CARTAvis/carta-protobuf/blob/dev/control/resume_session.proto]

	Field

	Type

	Label

	Description

	directory

	string

	
	

	file

	string

	
	

	lel_expr

	bool

	
	

	hdu

	string

	
	

	file_id

	sfixed32

	
	

	render_mode

	RenderMode

	
	

	channel

	sfixed32

	
	

	stokes

	sfixed32

	
	

	regions

	map<key: sfixed32, value: RegionInfo>

	repeated

	

	contour_settings

	SetContourParameters

	
	

	stokes_files

	StokesFile

	repeated

	

	support_aips_beam

	bool

	
	

5.1.27. ImportRegion

Source file: control/import_region.proto [https://github.com/CARTAvis/carta-protobuf/blob/dev/control/import_region.proto]

IMPORT_REGION:
Requests the opening and applying of a specific region file.
Backend responds with IMPORT_REGION_ACK

	Field

	Type

	Label

	Description

	group_id

	sfixed32

	
	Required WCS group id (may be a single file id)

	type

	FileType

	
	Required file type

	directory

	string

	
	Optional directory name of server file

	file

	string

	
	Optional file name of server file

	contents

	string

	repeated

	Optional file contents of client file (1 line per string)

5.1.28. ImportRegionAck

Source file: control/import_region.proto [https://github.com/CARTAvis/carta-protobuf/blob/dev/control/import_region.proto]

IMPORT_REGION_ACK
Response for IMPORT_REGION. Also supplies region properties

	Field

	Type

	Label

	Description

	success

	bool

	
	Defines whether IMPORT_REGION was successful

	message

	string

	
	Error message (if applicable)

	regions

	map<key: sfixed32, value: RegionInfo>

	repeated

	Map region id to parameters

	region_styles

	map<key: sfixed32, value: RegionStyle>

	repeated

	Map region id to style parameters

5.1.29. MomentProgress

Source file: request/moment_request.proto [https://github.com/CARTAvis/carta-protobuf/blob/dev/request/moment_request.proto]

	Field

	Type

	Label

	Description

	file_id

	sfixed32

	
	

	progress

	float

	
	

5.1.30. MomentRequest

Source file: request/moment_request.proto [https://github.com/CARTAvis/carta-protobuf/blob/dev/request/moment_request.proto]

	Field

	Type

	Label

	Description

	file_id

	sfixed32

	
	

	moments

	Moment

	repeated

	

	axis

	MomentAxis

	
	

	region_id

	sfixed32

	
	

	spectral_range

	IntBounds

	
	

	mask

	MomentMask

	
	

	pixel_range

	FloatBounds

	
	

	keep

	bool

	
	

5.1.31. MomentResponse

Source file: request/moment_request.proto [https://github.com/CARTAvis/carta-protobuf/blob/dev/request/moment_request.proto]

	Field

	Type

	Label

	Description

	success

	bool

	
	

	message

	string

	
	

	open_file_acks

	OpenFileAck

	repeated

	

	cancel

	bool

	
	

5.1.32. OpenCatalogFile

Source file: control/open_catalog_file.proto [https://github.com/CARTAvis/carta-protobuf/blob/dev/control/open_catalog_file.proto]

	Field

	Type

	Label

	Description

	directory

	string

	
	

	name

	string

	
	

	file_id

	sfixed32

	
	

	preview_data_size

	sfixed32

	
	

5.1.33. OpenCatalogFileAck

Source file: control/open_catalog_file.proto [https://github.com/CARTAvis/carta-protobuf/blob/dev/control/open_catalog_file.proto]

	Field

	Type

	Label

	Description

	success

	bool

	
	

	message

	string

	
	

	file_id

	sfixed32

	
	

	file_info

	CatalogFileInfo

	
	

	data_size

	sfixed32

	
	

	headers

	CatalogHeader

	repeated

	

	preview_data

	map<key: fixed32, value: ColumnData>

	repeated

	

5.1.34. OpenFile

Source file: control/open_file.proto [https://github.com/CARTAvis/carta-protobuf/blob/dev/control/open_file.proto]

OPEN_FILE:
Requests the opening of a specific file.
Backend responds with OPEN_FILE_ACK

	Field

	Type

	Label

	Description

	directory

	string

	
	Required directory name

	file

	string

	
	File name or LEL expression

	hdu

	string

	
	Which HDU to load (if applicable). If left blank, the first HDU will be used

	file_id

	sfixed32

	
	Which “file” slot to load the file into (when viewing multiple files)

	render_mode

	RenderMode

	
	The render mode to use. Additional modes will be added in subsequent versions.

	lel_expr

	bool

	
	Defines whether file is LEL expression

	support_aips_beam

	bool

	
	Defines whether to support AIPS beam in FITS history headers

5.1.35. OpenFileAck

Source file: control/open_file.proto [https://github.com/CARTAvis/carta-protobuf/blob/dev/control/open_file.proto]

OPEN_FILE_ACK
Response for OPEN_FILE. Also supplies file information

	Field

	Type

	Label

	Description

	success

	bool

	
	Defines whether OPEN_FILE was successful

	file_id

	sfixed32

	
	Which file slot the file was loaded into (when viewing multiple files)

	message

	string

	
	Error message (if applicable)

	file_info

	FileInfo

	
	Basic file info (type, size)

	file_info_extended

	FileInfoExtended

	
	Extended file info (WCS, header info)

	file_feature_flags

	fixed32

	
	Optional bitflags specifying feature flags of the file being opened.

	beam_table

	Beam

	repeated

	Beam table for multiple-beam images

5.1.36. PvPreviewData

Source file: stream/pv_preview.proto [https://github.com/CARTAvis/carta-protobuf/blob/dev/stream/pv_preview.proto]

Data stream for PV preview image

	Field

	Type

	Label

	Description

	preview_id

	sfixed32

	
	Preview ID for the PV preview viewer

	image_info

	FileInfoExtended

	
	Image extended file info

	image_data

	bytes

	
	Image data. For uncompressed data, this is converted into FP32, while for compressed data, this is passed to the compression library for decompression.

	nan_encodings

	bytes

	
	Run-length encodings of NaN values used to restore the NaN values after decompression.

	width

	sfixed32

	
	Dimensions of data

	height

	sfixed32

	
	

	compression_type

	CompressionType

	
	The compression algorithm used

	compression_quality

	float

	
	Compression quality switch

	histogram_bounds

	FloatBounds

	
	Histogram min/max, for rendering

	histogram

	Histogram

	
	Histogram, to tune rendering

5.1.37. PvProgress

Source file: request/pv_request.proto [https://github.com/CARTAvis/carta-protobuf/blob/dev/request/pv_request.proto]

	Field

	Type

	Label

	Description

	file_id

	sfixed32

	
	File ID of the source image for the PV generator

	preview_id

	sfixed32

	
	Preview ID of the PV preview viewer

	progress

	float

	
	Progress indicator, ranging from 0 to 1

5.1.38. PvRequest

Source file: request/pv_request.proto [https://github.com/CARTAvis/carta-protobuf/blob/dev/request/pv_request.proto]

	Field

	Type

	Label

	Description

	file_id

	sfixed32

	
	File ID of the source image

	region_id

	sfixed32

	
	Region ID of the PV cut in the source image

	width

	sfixed32

	
	Averaging width along PV cut

	spectral_range

	IntBounds

	
	Range of channels to be used in velocity axis

	reverse

	bool

	
	Flag whether to generate [Spatial, Spectral] image or reverse

	keep

	bool

	
	Flag whether to keep or replace previously-generated images

	preview_settings

	PvPreviewSettings

	
	Parameters for preview mode

5.1.39. PvResponse

Source file: request/pv_request.proto [https://github.com/CARTAvis/carta-protobuf/blob/dev/request/pv_request.proto]

	Field

	Type

	Label

	Description

	success

	bool

	
	Defines whether PV_REQUEST was successful

	message

	string

	
	Error message (if applicable)

	open_file_ack

	OpenFileAck

	
	PV generator result: generated PV image

	preview_data

	PvPreviewData

	
	PV preview result: generated PV image

	cancel

	bool

	
	Defines whether PV_REQUEST was canceled

5.1.40. RasterTileData

Source file: stream/raster_tile.proto [https://github.com/CARTAvis/carta-protobuf/blob/dev/stream/raster_tile.proto]

	Field

	Type

	Label

	Description

	file_id

	sfixed32

	
	The file ID that the raster image corresponds to

	channel

	sfixed32

	
	The image channel (z-coordinate)

	stokes

	sfixed32

	
	The image stokes coordinate

	compression_type

	CompressionType

	
	The compression algorithm used.

	compression_quality

	float

	
	Compression quality switch

	sync_id

	sfixed32

	
	The ID of the sync sequence

	tile_count

	sfixed32

	
	The number of tiles in a sync group

	animation_id

	sfixed32

	
	The ID of the animation (if any)

	tiles

	TileData

	repeated

	List of tile data

5.1.41. RasterTileSync

Source file: stream/raster_tile.proto [https://github.com/CARTAvis/carta-protobuf/blob/dev/stream/raster_tile.proto]

	Field

	Type

	Label

	Description

	file_id

	sfixed32

	
	The file ID that the raster image corresponds to

	channel

	sfixed32

	
	The image channel (z-coordinate)

	stokes

	sfixed32

	
	The image stokes coordinate

	sync_id

	sfixed32

	
	The ID of the sync sequence

	animation_id

	sfixed32

	
	The ID of the animation (if any)

	end_sync

	bool

	
	Is this a start or end sync message?

5.1.42. RegionFileInfoRequest

Source file: request/region_file_info.proto [https://github.com/CARTAvis/carta-protobuf/blob/dev/request/region_file_info.proto]

REGION_FILE_INFO_REQUEST:
Requests contents for a specific region file on the server
Backend responds with REGION_FILE_INFO_RESPONSE

	Field

	Type

	Label

	Description

	directory

	string

	
	Required directory name

	file

	string

	
	Required file name

5.1.43. RegionFileInfoResponse

Source file: request/region_file_info.proto [https://github.com/CARTAvis/carta-protobuf/blob/dev/request/region_file_info.proto]

REGION_FILE_INFO_RESPONSE
Response for REGION_FILE_INFO_REQUEST.
Gives information on the requested file

	Field

	Type

	Label

	Description

	success

	bool

	
	Defines whether the REGION_INFO_REQUEST was successful

	message

	string

	
	Error message (if applicable)

	file_info

	FileInfo

	
	Basic info about region file

	contents

	string

	repeated

	Contents of file; each string is a line

5.1.44. RegionHistogramData

Source file: stream/region_histogram.proto [https://github.com/CARTAvis/carta-protobuf/blob/dev/stream/region_histogram.proto]

REGION_HISTOGRAM_DATA:
Stats data for a specific region

	Field

	Type

	Label

	Description

	file_id

	sfixed32

	
	The file ID that the histogram corresponds to

	region_id

	sfixed32

	
	The region ID corresponding to the histogram. If the histogram corresponds to the entire current 2D image, the region ID has a value of -1.

	channel

	sfixed32

	
	The image channel corresponding to the histogram

	stokes

	sfixed32

	
	The image stokes corresponding to the histogram

	histograms

	Histogram

	
	Array of histograms of the current file, region, channel and stokes

	progress

	float

	
	Progress indicator, in the case of partial histogram results being sent

	config

	HistogramConfig

	
	Histogram configuration from the frontend

5.1.45. RegionListRequest

Source file: request/region_list.proto [https://github.com/CARTAvis/carta-protobuf/blob/dev/request/region_list.proto]

REGION_LIST_REQUEST:
Requests the list of available region files for a given directory.
Backend responds with REGION_LIST_RESPONSE

	Field

	Type

	Label

	Description

	directory

	string

	
	Required directory name

	filter_mode

	FileListFilterMode

	
	Filter mode to use when showing the file list

5.1.46. RegionListResponse

Source file: request/region_list.proto [https://github.com/CARTAvis/carta-protobuf/blob/dev/request/region_list.proto]

REGION_LIST_RESPONSE
Response for REGION_LIST_REQUEST.
Gives a list of available region files (and their types), as well as subdirectories

	Field

	Type

	Label

	Description

	success

	bool

	
	Defines whether the REGION_LIST_REQUEST was successful

	message

	string

	
	Error message (if applicable)

	directory

	string

	
	Directory of listing

	parent

	string

	
	Directory parent (null/empty if top-level)

	files

	FileInfo

	repeated

	List of available image files, with file type information and size information.

	subdirectories

	DirectoryInfo

	repeated

	List of available subdirectories, with number of items and modified date

	cancel

	bool

	
	

5.1.47. RegionStatsData

Source file: stream/region_stats.proto [https://github.com/CARTAvis/carta-protobuf/blob/dev/stream/region_stats.proto]

REGION_STATS_DATA:
Stats data for a specific region

	Field

	Type

	Label

	Description

	file_id

	sfixed32

	
	The file ID that the profile corresponds to

	region_id

	sfixed32

	
	The region_id corresponding to this profile. If the statistics data corresponds to the entire current 2D image, the region ID has a value of -1.

	channel

	sfixed32

	
	The image channel used to generate the statistics

	stokes

	sfixed32

	
	The image stokes parameter used to generate the profiles

	statistics

	StatisticsValue

	repeated

	Array of statistics values, each corresponding to a particular measurement, such as max, min, mean, etc

5.1.48. RegisterViewer

Source file: control/register_viewer.proto [https://github.com/CARTAvis/carta-protobuf/blob/dev/control/register_viewer.proto]

REGISTER_VIEWER:
Registers the viewer with the backend.
Responds with REGISTER_VIEWER_ACK

	Field

	Type

	Label

	Description

	session_id

	fixed32

	
	Unique session ID parameter (can be generated using UUID libraries). Passing in an existing session ID can be used for resuming sessions

	api_key

	string

	
	Optional user-specific API key to be used for basic authentication. Could be an encrypted JWT for secure authentication.

	client_feature_flags

	fixed32

	
	Optional feature bitflag specifying client-side feature set

5.1.49. RegisterViewerAck

Source file: control/register_viewer.proto [https://github.com/CARTAvis/carta-protobuf/blob/dev/control/register_viewer.proto]

REGISTER_VIEWER_ACK
Acknowledgement response for REGISTER_VIEWER.
Informs the frontend whether the session was correctly.

	Field

	Type

	Label

	Description

	session_id

	fixed32

	
	Unique session ID

	success

	bool

	
	Defines whether the REGISTER_VIEWER command was successful

	message

	string

	
	Error message (if applicable)

	session_type

	SessionType

	
	Defines the type of session established

	server_feature_flags

	fixed32

	
	Optional feature bitflag specifying server-side feature set

	user_preferences

	map<key: string, value: string>

	repeated

	Map of user preferences retrieved from the server database. If this is empty and the server does not have the USER_PREFERENCES feature flag set, then the user preferences are read from localStorage instead.

	user_layouts

	map<key: string, value: string>

	repeated

	Map of user layouts retrieved from the server database

	platform_strings

	map<key: string, value: string>

	repeated

	Map of server-generated platform information strings

5.1.50. RemoveRegion

Source file: control/region.proto [https://github.com/CARTAvis/carta-protobuf/blob/dev/control/region.proto]

REMOVE_REGION:
Removes a region

	Field

	Type

	Label

	Description

	region_id

	sfixed32

	
	Unique region ID of the region to be removed

5.1.51. RemoveRequiredTiles

Source file: control/tiles.proto [https://github.com/CARTAvis/carta-protobuf/blob/dev/control/tiles.proto]

REMOVE_REQUIRED_TILES
Provides a list of tiles that are required for the specified file

	Field

	Type

	Label

	Description

	file_id

	sfixed32

	
	The file ID that the view corresponds to

	tiles

	sfixed32

	repeated

	The list of tiles required, in encoded coordinate

5.1.52. ResumeSession

Source file: control/resume_session.proto [https://github.com/CARTAvis/carta-protobuf/blob/dev/control/resume_session.proto]

	Field

	Type

	Label

	Description

	images

	ImageProperties

	repeated

	

	catalog_files

	OpenCatalogFile

	repeated

	

5.1.53. ResumeSessionAck

Source file: control/resume_session.proto [https://github.com/CARTAvis/carta-protobuf/blob/dev/control/resume_session.proto]

	Field

	Type

	Label

	Description

	success

	bool

	
	

	message

	string

	
	

5.1.54. SaveFile

Source file: request/save_file.proto [https://github.com/CARTAvis/carta-protobuf/blob/dev/request/save_file.proto]

	Field

	Type

	Label

	Description

	file_id

	sfixed32

	
	

	output_file_directory

	string

	
	

	output_file_name

	string

	
	

	output_file_type

	FileType

	
	The format of a new image file

	region_id

	sfixed32

	
	

	channels

	sfixed32

	repeated

	Set image channels: [start, end, stride]

	stokes

	sfixed32

	repeated

	Set image stokes: [start, end, stride]

	keep_degenerate

	bool

	
	

	rest_freq

	double

	
	Set the rest frequency (Hz) of the image

5.1.55. SaveFileAck

Source file: request/save_file.proto [https://github.com/CARTAvis/carta-protobuf/blob/dev/request/save_file.proto]

	Field

	Type

	Label

	Description

	file_id

	sfixed32

	
	

	success

	bool

	
	

	message

	string

	
	

5.1.56. ScriptingRequest

Source file: request/scripting.proto [https://github.com/CARTAvis/carta-protobuf/blob/dev/request/scripting.proto]

	Field

	Type

	Label

	Description

	scripting_request_id

	sfixed32

	
	Used to connect a single scripting request to its response

	target

	string

	
	the path of the target object. e.g. activeFrame.renderConfig

	action

	string

	
	the name of the function to call. e.g. setColorMap

	parameters

	string

	
	JSON array of parameters. e.g. ‘[“viridis”]’

	async

	bool

	
	flag indicating whether the frontend should execute this asynchronously, or only return once the call is complete

	return_path

	string

	
	optional string indicating the path of the response sub-object to return. If this is empty, the entire response will be returned.

5.1.57. ScriptingResponse

Source file: request/scripting.proto [https://github.com/CARTAvis/carta-protobuf/blob/dev/request/scripting.proto]

	Field

	Type

	Label

	Description

	scripting_request_id

	sfixed32

	
	should match the incoming request ID

	success

	bool

	
	indicates whether the call was correctly executed

	message

	string

	
	optional error message

	response

	string

	
	JSON-parsable response. e.g. “true”, or the base64-encoded string

5.1.58. SetContourParameters

Source file: control/contour.proto [https://github.com/CARTAvis/carta-protobuf/blob/dev/control/contour.proto]

SET_CONTOUR_PARAMETERS
Sets the contour parameters for a file

	Field

	Type

	Label

	Description

	file_id

	fixed32

	
	The file ID that the contour corresponds to

	reference_file_id

	fixed32

	
	The file ID of the reference image that the contour vertices should be mapped to

	image_bounds

	ImageBounds

	
	The XY bounds corresponding to the image data in pixel coordinates

	levels

	double

	repeated

	Contour levels

	smoothing_mode

	SmoothingMode

	
	Pre-contouring smoothing mode

	smoothing_factor

	int32

	
	Contour smoothness factor. For block averaging, this is the block width For Gaussian smoothing, this defines both the Gaussian width, and the kernel size

	decimation_factor

	int32

	
	Decimation factor, indicates to what 1/Nth of a pixel the contour vertices should be rounded to

	compression_level

	int32

	
	Zstd compression level

	contour_chunk_size

	int32

	
	Size of contour chunks, in number of vertices. If this is set to zero, partial contour results are not used

5.1.59. SetCursor

Source file: control/set_cursor.proto [https://github.com/CARTAvis/carta-protobuf/blob/dev/control/set_cursor.proto]

SET_CURSOR:
Sets the current cursor position in image space coordinates.
The cursor defines a special case of a region, with a single control point.

	Field

	Type

	Label

	Description

	file_id

	sfixed32

	
	Which file slot the cursor is moving over

	point

	Point

	
	XY-coordinates of cursor in image space

	spatial_requirements

	SetSpatialRequirements

	
	Optional accompanying spatial requirements message to be processed prior to cursor update

5.1.60. SetHistogramRequirements

Source file: control/region_requirements.proto [https://github.com/CARTAvis/carta-protobuf/blob/dev/control/region_requirements.proto]

SET_HISTOGRAM_REQUIREMENTS:
Sets which histogram data needs to be streamed to the frontend when the region is updated

	Field

	Type

	Label

	Description

	file_id

	sfixed32

	
	Which file slot the requirements describe

	region_id

	sfixed32

	
	ID of the region that is having requirements defined. If a region ID of -1 is given, this corresponds to the entire 2D image.

	histograms

	HistogramConfig

	repeated

	List of required histograms, along with the number of bins. If the channel is -1, the current channel is used. If the channel is -2, the histogram is constructed over all channels. If the number of bins is less than zero, an automatic bin size is used, based on the number of values.

5.1.61. SetImageChannels

Source file: control/set_image_channels.proto [https://github.com/CARTAvis/carta-protobuf/blob/dev/control/set_image_channels.proto]

SET_IMAGE_CHANNELS
Sets the current image channel and Stokes parameter

	Field

	Type

	Label

	Description

	file_id

	sfixed32

	
	The file ID that the view corresponds to

	channel

	sfixed32

	
	The image channel (Z-coordinate)

	stokes

	sfixed32

	
	The image stokes parameter

	required_tiles

	AddRequiredTiles

	
	Required tiles when changing channels

5.1.62. SetRegion

Source file: control/region.proto [https://github.com/CARTAvis/carta-protobuf/blob/dev/control/region.proto]

SET_REGION:
Creates or updates a region. Backend responds with SET_REGION_ACK

	Field

	Type

	Label

	Description

	file_id

	sfixed32

	
	File slot of the reference image

	region_id

	sfixed32

	
	Unique region ID. <=0 if a new region is being created.

	region_info

	RegionInfo

	
	Region parameters

	preview_region

	bool

	
	Update region for pv preview only

5.1.63. SetRegionAck

Source file: control/region.proto [https://github.com/CARTAvis/carta-protobuf/blob/dev/control/region.proto]

SET_REGION_ACK:
Response for SET_REGION

	Field

	Type

	Label

	Description

	success

	bool

	
	Defines whether SET_REGION was successful

	message

	string

	
	Error message (if applicable)

	region_id

	sfixed32

	
	The unique region ID. If the region is updated, this will be the same as the region ID specified in SET_REGION. If a new region is being created, the ID of the new region will be passed back.

5.1.64. SetSpatialRequirements

Source file: control/region_requirements.proto [https://github.com/CARTAvis/carta-protobuf/blob/dev/control/region_requirements.proto]

SET_SPATIAL_REQUIREMENTS:
Sets which information needs to be streamed to the frontend when the region is updated

	Field

	Type

	Label

	Description

	file_id

	sfixed32

	
	Which file slot the requirements describe

	region_id

	sfixed32

	
	ID of the region that is having requirements defined. If a region ID of 0 is given, this corresponds to the point region defined by the cursor position.

	spatial_profiles

	SpatialConfig

	repeated

	List of spatial profiles needed.

5.1.65. SetSpectralRequirements

Source file: control/region_requirements.proto [https://github.com/CARTAvis/carta-protobuf/blob/dev/control/region_requirements.proto]

SET_SPECTRAL_REQUIREMENTS:
Sets which spectral profile data needs to be streamed to the frontend when the region is updated

	Field

	Type

	Label

	Description

	file_id

	sfixed32

	
	Which file slot the requirements describe

	region_id

	sfixed32

	
	ID of the region that is having requirements defined. If a region ID of 0 is given, this corresponds to the point region defined by the cursor position.

	spectral_profiles

	SpectralConfig

	repeated

	List of spectral profiles needed, along with which stats types are needed for each profile.

5.1.66. SetStatsRequirements

Source file: control/region_requirements.proto [https://github.com/CARTAvis/carta-protobuf/blob/dev/control/region_requirements.proto]

SET_STATS_REQUIREMENTS:
Sets which stats data needs to be streamed to the frontend when the region is updated

	Field

	Type

	Label

	Description

	file_id

	sfixed32

	
	Which file slot the requirements describe

	region_id

	sfixed32

	
	ID of the region that is having requirements defined. If a region ID of -1 is given, this corresponds to the entire 2D image.

	stats_configs

	StatsConfig

	repeated

	List of required stats

5.1.67. SetVectorOverlayParameters

Source file: control/vector_overlay.proto [https://github.com/CARTAvis/carta-protobuf/blob/dev/control/vector_overlay.proto]

SET_VECTOR_OVERLAY_PARAMETERS
Sets the overlay parameters for a file

	Field

	Type

	Label

	Description

	file_id

	fixed32

	
	The file ID that the overlay corresponds to

	image_bounds

	ImageBounds

	
	The XY bounds corresponding to the image data in pixel coordinates. Currently unused

	smoothing_factor

	fixed32

	
	Block smoothing factor to use. Must be an even integer, corresponds to the mip coordinate.

	fractional

	bool

	
	Whether to use fractional polarization intensity

	threshold

	double

	
	Threshold value to use. If this is set to NaN, no threshold is applied.

	debiasing

	bool

	
	Whether to use debiasing

	q_error

	double

	
	Stokes Q error when debiasing

	u_error

	double

	
	Stokes U error when debiasing

	stokes_intensity

	sfixed32

	
	The Stokes coordinate to use when generating vector intensity. If this is < 0, uniform intensity is used. If both this and stokes_angle are < 0, the overlay requirement is cleared

	stokes_angle

	sfixed32

	
	The Stokes coordinate to use when generating vector angle. If this is < 0, uniform angle is used (e.g. when rendering block markers)

	compression_type

	CompressionType

	
	The compression algorithm to use.

	compression_quality

	float

	
	Compression quality switch

5.1.68. SpatialConfig

Source file: control/region_requirements.proto [https://github.com/CARTAvis/carta-protobuf/blob/dev/control/region_requirements.proto]

	Field

	Type

	Label

	Description

	coordinate

	string

	
	The required spatial coordinate (“x” or “y”).

	start

	sfixed32

	
	The start of the required range (inclusive). If the start and end are the same (i.e. the range is empty), the default of 0 is used.

	end

	sfixed32

	
	The end of the required range (exclusive). If the start and end are the same (i.e. the range is empty), the height or width of the image is used.

	mip

	sfixed32

	
	The maximum required mip. The backend must return data of at least this resolution, but may return a higher resolution. If this is unset or 0, the full-resolution data is used.

	width

	sfixed32

	
	Width of line region for line profile. Not used for point region.

5.1.69. SpatialProfileData

Source file: stream/spatial_profile.proto [https://github.com/CARTAvis/carta-protobuf/blob/dev/stream/spatial_profile.proto]

SPATIAL_PROFILE_DATA:
Data for spatial profile set for a specific file

	Field

	Type

	Label

	Description

	file_id

	sfixed32

	
	The file ID that the profile corresponds to

	region_id

	sfixed32

	
	The region_id corresponding to this profile. If the profile corresponds to the cursor position, the region ID is zero.

	x

	sfixed32

	
	The pixel X-coordinate of the profile set

	y

	sfixed32

	
	The pixel Y-coordinate of the profile set

	channel

	sfixed32

	
	The image channel used to generate the profiles

	stokes

	sfixed32

	
	The image stokes parameter used to generate the profiles

	value

	float

	
	The value of the image at the given coordinates

	profiles

	SpatialProfile

	repeated

	Spatial profiles for each required profile type

5.1.70. SpectralConfig

Source file: control/region_requirements.proto [https://github.com/CARTAvis/carta-protobuf/blob/dev/control/region_requirements.proto]

	Field

	Type

	Label

	Description

	coordinate

	string

	
	The required spectral coordinate (“z”), optionally preceded by a polarization parameter. If no polarization parameter is present, or if the coordinate is empty, the active polarization parameter is used.

	stats_types

	StatsType

	repeated

	The required stats type. If the region is a point region, this field is ignored.

5.1.71. SpectralProfileData

Source file: stream/spectral_profile.proto [https://github.com/CARTAvis/carta-protobuf/blob/dev/stream/spectral_profile.proto]

SPECTRAL_PROFILE_DATA:
Data for spectral profile set for a specific file

	Field

	Type

	Label

	Description

	file_id

	sfixed32

	
	The file ID that the profile corresponds to

	region_id

	sfixed32

	
	The region ID that the stats data corresponds to. If the profile corresponds to the cursor position, the region ID has a value of 0.

	stokes

	sfixed32

	
	The image stokes parameter used to generate the profiles

	progress

	float

	
	Progress indicator, in the case of partial profile results being sent. If the profile calculations are time-consuming, regular updates should be sent to the frontend. If the data is complete, progress >= 1.

	profiles

	SpectralProfile

	repeated

	Spatial profiles for each required profile type

5.1.72. StartAnimation

Source file: control/animation.proto [https://github.com/CARTAvis/carta-protobuf/blob/dev/control/animation.proto]

START_ANIMATION:
Starts an animation, as defined by the start, stop and step definitions.
Backend responds with START_ANIMATION_ACK

	Field

	Type

	Label

	Description

	file_id

	sfixed32

	
	Which file slot the animation describes.

	first_frame

	AnimationFrame

	
	The lower bound of the animation when looping.

	start_frame

	AnimationFrame

	
	The starting point of the animation.

	last_frame

	AnimationFrame

	
	The upper bound of the animation.

	delta_frame

	AnimationFrame

	
	The frame change step for the animation. For example, a delta frame of {channel=1, stokes=0} would step through each channel in the file.

	frame_rate

	sfixed32

	
	Frame rate per second

	looping

	bool

	
	Whether to loop the animation indefinitely.

	reverse

	bool

	
	Whether to reverse the animation direction when endFrame is reached.

	required_tiles

	AddRequiredTiles

	
	Required tiles when changing channels

	matched_frames

	map<key: sfixed32, value: MatchedFrameList>

	repeated

	

	stokes_indices

	sfixed32

	repeated

	Required stokes frames with respect to stokes types

5.1.73. StartAnimationAck

Source file: control/animation.proto [https://github.com/CARTAvis/carta-protobuf/blob/dev/control/animation.proto]

START_ANIMATION_ACK
Response for START_ANIMATION

	Field

	Type

	Label

	Description

	success

	bool

	
	Defines whether START_ANIMATION was successful

	message

	string

	
	Error message (if applicable)

	animation_id

	sfixed32

	
	The animation ID of the new animation

5.1.74. StatsConfig

Source file: control/region_requirements.proto [https://github.com/CARTAvis/carta-protobuf/blob/dev/control/region_requirements.proto]

	Field

	Type

	Label

	Description

	coordinate

	string

	
	

	stats_types

	StatsType

	repeated

	

5.1.75. StokesFile

Source file: control/concat_stokes_files.proto [https://github.com/CARTAvis/carta-protobuf/blob/dev/control/concat_stokes_files.proto]

	Field

	Type

	Label

	Description

	directory

	string

	
	Required directory name

	file

	string

	
	Required file name

	hdu

	string

	
	Which HDU to load (if applicable). If left blank, the first HDU will be used

	polarization_type

	PolarizationType

	
	Polarization type

5.1.76. StopAnimation

Source file: control/animation.proto [https://github.com/CARTAvis/carta-protobuf/blob/dev/control/animation.proto]

STOP_ANIMATION
Stops the playing animation

	Field

	Type

	Label

	Description

	file_id

	sfixed32

	
	Which file slot the animation describes.

	end_frame

	AnimationFrame

	
	The ending point of the animation.

5.1.77. StopFileList

Source file: request/file_list.proto [https://github.com/CARTAvis/carta-protobuf/blob/dev/request/file_list.proto]

	Field

	Type

	Label

	Description

	file_list_type

	FileListType

	
	

5.1.78. StopFitting

Source file: request/fitting_request.proto [https://github.com/CARTAvis/carta-protobuf/blob/dev/request/fitting_request.proto]

STOP_FITTING:
Cancels the requested fitting.

	Field

	Type

	Label

	Description

	file_id

	sfixed32

	
	Stop image fitting with respect to the image file id

5.1.79. StopMomentCalc

Source file: control/stop_moment_calc.proto [https://github.com/CARTAvis/carta-protobuf/blob/dev/control/stop_moment_calc.proto]

	Field

	Type

	Label

	Description

	file_id

	sfixed32

	
	Stop the moment calculation with respect to the image file id

5.1.80. StopPvCalc

Source file: control/stop_pv_calc.proto [https://github.com/CARTAvis/carta-protobuf/blob/dev/control/stop_pv_calc.proto]

	Field

	Type

	Label

	Description

	file_id

	sfixed32

	
	Stop the PV image calculation for the image file id

5.1.81. StopPvPreview

Source file: control/stop_pv_calc.proto [https://github.com/CARTAvis/carta-protobuf/blob/dev/control/stop_pv_calc.proto]

	Field

	Type

	Label

	Description

	preview_id

	sfixed32

	
	Stop the PV preview for the preview viewer id

5.1.82. VectorOverlayTileData

Source file: stream/vector_overlay_tile.proto [https://github.com/CARTAvis/carta-protobuf/blob/dev/stream/vector_overlay_tile.proto]

	Field

	Type

	Label

	Description

	file_id

	sfixed32

	
	The file ID that the vector overlay image corresponds to

	channel

	sfixed32

	
	The image channel (z-coordinate)

	stokes_intensity

	sfixed32

	
	The Stokes coordinate that was used to generate vector intensity. If this is < 0, uniform intensity is used

	stokes_angle

	sfixed32

	
	The Stokes coordinate that was used to generate vector angle. If this is < 0, uniform angle is used (e.g. when rendering block markers)

	compression_type

	CompressionType

	
	The compression algorithm used.

	compression_quality

	float

	
	Compression quality switch

	intensity_tiles

	TileData

	repeated

	List of tile data for vector intensity. The length of this list must match that of angle_tiles, or be zero

	angle_tiles

	TileData

	repeated

	List of tile data for vector angle. The length of this list must match that of intensity_tiles, or be zero

	progress

	double

	
	Progress of the vector overlay being sent. If this is zero, the message is assumed to contain the entire contour sets

5.2. Sub-messages

5.2.1. AnimationFrame

Source file: shared/defs.proto [https://github.com/CARTAvis/carta-protobuf/blob/dev/shared/defs.proto]

	Field

	Type

	Label

	Description

	channel

	sfixed32

	
	

	stokes

	sfixed32

	
	

5.2.2. AnnotationStyle

Source file: shared/defs.proto [https://github.com/CARTAvis/carta-protobuf/blob/dev/shared/defs.proto]

	Field

	Type

	Label

	Description

	point_shape

	PointAnnotationShape

	
	Point annotation shape

	point_width

	sfixed32

	
	Point annotation width

	text_label0

	string

	
	Text annotation text / Compass annotation north label

	text_label1

	string

	
	Compass annotation east label

	coordinate_system

	string

	
	Compass and Ruler coordinate sytem

	is_north_arrow

	bool

	
	Compass annotation north arrowhead

	is_east_arrow

	bool

	
	Compass annotation east arrowhead

	text_position

	TextAnnotationPosition

	
	Text annotation position

	font_style

	string

	
	Font style (bold, italic, bold_italic)

	font

	string

	
	Font (Times / Helvetica / Courier)

	font_size

	sfixed32

	
	Font size for Text, Compass, Ruler

5.2.3. AxesNumbers

Source file: shared/defs.proto [https://github.com/CARTAvis/carta-protobuf/blob/dev/shared/defs.proto]

	Field

	Type

	Label

	Description

	spatial_x

	sfixed32

	
	Spatial X axis number

	spatial_y

	sfixed32

	
	Spatial Y axis number

	spectral

	sfixed32

	
	Spectral axis number

	stokes

	sfixed32

	
	Stokes axis number

	depth

	sfixed32

	
	Depth axis is non-render axis that is not stokes (if any)

5.2.4. Beam

Source file: shared/defs.proto [https://github.com/CARTAvis/carta-protobuf/blob/dev/shared/defs.proto]

describe each beam for multi-beam images

	Field

	Type

	Label

	Description

	channel

	sfixed32

	
	

	stokes

	sfixed32

	
	

	major_axis

	float

	
	

	minor_axis

	float

	
	

	pa

	float

	
	

5.2.5. CatalogFileInfo

Source file: shared/defs.proto [https://github.com/CARTAvis/carta-protobuf/blob/dev/shared/defs.proto]

	Field

	Type

	Label

	Description

	name

	string

	
	

	type

	CatalogFileType

	
	

	file_size

	sfixed64

	
	

	description

	string

	
	

	coosys

	Coosys

	repeated

	

	date

	sfixed64

	
	

5.2.6. CatalogHeader

Source file: shared/defs.proto [https://github.com/CARTAvis/carta-protobuf/blob/dev/shared/defs.proto]

	Field

	Type

	Label

	Description

	name

	string

	
	

	data_type

	ColumnType

	
	

	column_index

	sfixed32

	
	

	description

	string

	
	

	units

	string

	
	

5.2.7. CatalogImageBounds

Source file: shared/defs.proto [https://github.com/CARTAvis/carta-protobuf/blob/dev/shared/defs.proto]

	Field

	Type

	Label

	Description

	x_column_name

	string

	
	

	y_column_name

	string

	
	

	image_bounds

	ImageBounds

	
	

5.2.8. ColumnData

Source file: shared/defs.proto [https://github.com/CARTAvis/carta-protobuf/blob/dev/shared/defs.proto]

	Field

	Type

	Label

	Description

	data_type

	ColumnType

	
	

	string_data

	string

	repeated

	All data types other than string sent as binary

	binary_data

	bytes

	
	binary data will get converted to a TypedArray

5.2.9. Coosys

Source file: shared/defs.proto [https://github.com/CARTAvis/carta-protobuf/blob/dev/shared/defs.proto]

	Field

	Type

	Label

	Description

	equinox

	string

	
	

	epoch

	string

	
	

	system

	string

	
	

5.2.10. DirectoryInfo

Source file: shared/defs.proto [https://github.com/CARTAvis/carta-protobuf/blob/dev/shared/defs.proto]

Directory info message structure (internal use only)

	Field

	Type

	Label

	Description

	name

	string

	
	

	item_count

	sfixed32

	
	

	date

	sfixed64

	
	

5.2.11. DoubleBounds

Source file: shared/defs.proto [https://github.com/CARTAvis/carta-protobuf/blob/dev/shared/defs.proto]

	Field

	Type

	Label

	Description

	min

	double

	
	

	max

	double

	
	

5.2.12. DoublePoint

Source file: shared/defs.proto [https://github.com/CARTAvis/carta-protobuf/blob/dev/shared/defs.proto]

	Field

	Type

	Label

	Description

	x

	double

	
	

	y

	double

	
	

5.2.13. FileInfo

Source file: shared/defs.proto [https://github.com/CARTAvis/carta-protobuf/blob/dev/shared/defs.proto]

File info message structure (internal use only)

	Field

	Type

	Label

	Description

	name

	string

	
	

	type

	FileType

	
	

	size

	sfixed64

	
	

	HDU_list

	string

	repeated

	

	date

	sfixed64

	
	

5.2.14. FileInfoExtended

Source file: shared/defs.proto [https://github.com/CARTAvis/carta-protobuf/blob/dev/shared/defs.proto]

	Field

	Type

	Label

	Description

	dimensions

	sfixed32

	
	Number of dimensions of the image file

	width

	sfixed32

	
	Width of the XY plane

	height

	sfixed32

	
	Height of the XY plane

	depth

	sfixed32

	
	Number of channels

	stokes

	sfixed32

	
	Number of Stokes parameters

	stokes_vals

	string

	repeated

	List of Stokes parameters contained in the file (if applicable). For files that do not explicitly specify Stokes files, this will be blank.

	header_entries

	HeaderEntry

	repeated

	Header entries from header string or attributes

	computed_entries

	HeaderEntry

	repeated

	

	axes_numbers

	AxesNumbers

	
	Axes numbers for directions, spectral, and stokes

5.2.15. FilterConfig

Source file: shared/defs.proto [https://github.com/CARTAvis/carta-protobuf/blob/dev/shared/defs.proto]

	Field

	Type

	Label

	Description

	column_name

	string

	
	

	comparison_operator

	ComparisonOperator

	
	

	value

	double

	
	

	secondary_value

	double

	
	

	sub_string

	string

	
	

5.2.16. FloatBounds

Source file: shared/defs.proto [https://github.com/CARTAvis/carta-protobuf/blob/dev/shared/defs.proto]

	Field

	Type

	Label

	Description

	min

	float

	
	

	max

	float

	
	

5.2.17. GaussianComponent

Source file: shared/defs.proto [https://github.com/CARTAvis/carta-protobuf/blob/dev/shared/defs.proto]

parameters of a 2D Gaussian component for image fitting

	Field

	Type

	Label

	Description

	center

	DoublePoint

	
	x/y coordinate of the center in pixels

	amp

	double

	
	amplitude of the component

	fwhm

	DoublePoint

	
	full width at half maximum along x/y coordinate in pixels

	pa

	double

	
	position angle in degrees

5.2.18. HeaderEntry

Source file: shared/defs.proto [https://github.com/CARTAvis/carta-protobuf/blob/dev/shared/defs.proto]

	Field

	Type

	Label

	Description

	name

	string

	
	

	value

	string

	
	

	entry_type

	EntryType

	
	

	numeric_value

	double

	
	

	comment

	string

	
	

5.2.19. Histogram

Source file: shared/defs.proto [https://github.com/CARTAvis/carta-protobuf/blob/dev/shared/defs.proto]

	Field

	Type

	Label

	Description

	num_bins

	sfixed32

	
	

	bin_width

	double

	
	

	first_bin_center

	double

	
	

	bins

	sfixed32

	repeated

	

	mean

	double

	
	

	std_dev

	double

	
	

5.2.20. HistogramConfig

Source file: shared/defs.proto [https://github.com/CARTAvis/carta-protobuf/blob/dev/shared/defs.proto]

	Field

	Type

	Label

	Description

	coordinate

	string

	
	

	channel

	sfixed32

	
	

	fixed_num_bins

	bool

	
	

	num_bins

	sfixed32

	
	

	fixed_bounds

	bool

	
	

	bounds

	DoubleBounds

	
	

5.2.21. ImageBounds

Source file: shared/defs.proto [https://github.com/CARTAvis/carta-protobuf/blob/dev/shared/defs.proto]

	Field

	Type

	Label

	Description

	x_min

	sfixed32

	
	

	x_max

	sfixed32

	
	

	y_min

	sfixed32

	
	

	y_max

	sfixed32

	
	

5.2.22. IntBounds

Source file: shared/defs.proto [https://github.com/CARTAvis/carta-protobuf/blob/dev/shared/defs.proto]

	Field

	Type

	Label

	Description

	min

	sfixed32

	
	

	max

	sfixed32

	
	

5.2.23. LineProfileAxis

Source file: shared/defs.proto [https://github.com/CARTAvis/carta-protobuf/blob/dev/shared/defs.proto]

	Field

	Type

	Label

	Description

	axis_type

	ProfileAxisType

	
	

	crpix

	float

	
	

	crval

	float

	
	

	cdelt

	float

	
	

	unit

	string

	
	

5.2.24. ListProgress

Source file: shared/defs.proto [https://github.com/CARTAvis/carta-protobuf/blob/dev/shared/defs.proto]

	Field

	Type

	Label

	Description

	file_list_type

	FileListType

	
	

	percentage

	float

	
	

	checked_count

	sfixed32

	
	

	total_count

	sfixed32

	
	

5.2.25. MatchedFrameList

Source file: shared/defs.proto [https://github.com/CARTAvis/carta-protobuf/blob/dev/shared/defs.proto]

	Field

	Type

	Label

	Description

	frame_numbers

	float

	repeated

	

5.2.26. Point

Source file: shared/defs.proto [https://github.com/CARTAvis/carta-protobuf/blob/dev/shared/defs.proto]

	Field

	Type

	Label

	Description

	x

	float

	
	

	y

	float

	
	

5.2.27. PvPreviewSettings

Source file: shared/defs.proto [https://github.com/CARTAvis/carta-protobuf/blob/dev/shared/defs.proto]

Preview parameters of a PV_REQUEST

	Field

	Type

	Label

	Description

	preview_id

	sfixed32

	
	Preview ID for the PV preview viewer

	region_id

	sfixed32

	
	Region ID for the subimage in the xy plane

	rebin_xy

	sfixed32

	
	Downsampling in xy axes

	rebin_z

	sfixed32

	
	Downsampling in z axis

	compression_type

	CompressionType

	
	The compression algorithm to use

	image_compression_quality

	float

	
	Compression quality from frontend performance preferences

	animation_compression_quality

	float

	
	

5.2.28. RegionInfo

Source file: shared/defs.proto [https://github.com/CARTAvis/carta-protobuf/blob/dev/shared/defs.proto]

	Field

	Type

	Label

	Description

	region_type

	RegionType

	
	The type of region described by the control points. The meaning of the control points will differ, depending on the type of region being defined.

	control_points

	Point

	repeated

	Control points for the region

	rotation

	float

	
	(Only applicable for ellipse and rectangle) Rotation of the region in the xy plane (radians).

5.2.29. RegionStyle

Source file: shared/defs.proto [https://github.com/CARTAvis/carta-protobuf/blob/dev/shared/defs.proto]

	Field

	Type

	Label

	Description

	name

	string

	
	The name of the region, displayed as an annotation label.

	color

	string

	
	Color as a name (“blue”), RGB string, or hex string

	line_width

	sfixed32

	
	Width in pixels

	dash_list

	sfixed32

	repeated

	Dash length: on, off

	annotation_style

	AnnotationStyle

	
	Annotation Styles

5.2.30. SpatialProfile

Source file: shared/defs.proto [https://github.com/CARTAvis/carta-protobuf/blob/dev/shared/defs.proto]

	Field

	Type

	Label

	Description

	start

	sfixed32

	
	

	end

	sfixed32

	
	

	raw_values_fp32

	bytes

	
	

	coordinate

	string

	
	

	mip

	sfixed32

	
	

	line_axis

	LineProfileAxis

	
	

5.2.31. SpectralProfile

Source file: shared/defs.proto [https://github.com/CARTAvis/carta-protobuf/blob/dev/shared/defs.proto]

	Field

	Type

	Label

	Description

	coordinate

	string

	
	

	stats_type

	StatsType

	
	

	raw_values_fp32

	bytes

	
	

	raw_values_fp64

	bytes

	
	

5.2.32. StatisticsValue

Source file: shared/defs.proto [https://github.com/CARTAvis/carta-protobuf/blob/dev/shared/defs.proto]

	Field

	Type

	Label

	Description

	stats_type

	StatsType

	
	

	value

	double

	
	

5.2.33. TileData

Source file: shared/defs.proto [https://github.com/CARTAvis/carta-protobuf/blob/dev/shared/defs.proto]

	Field

	Type

	Label

	Description

	layer

	sfixed32

	
	Tile layer coordinate. If this is < 0, the mip value is used for coordinates instead

	x

	sfixed32

	
	Tile x coordinate

	y

	sfixed32

	
	Tile y coordinate

	width

	sfixed32

	
	Width of the tile data. If this is left as zero, the default tile size should be used

	height

	sfixed32

	
	Height of the tile data. If this is left as zero, the default tile size should be used

	image_data

	bytes

	
	Image data. For uncompressed data, this is converted into FP32, while for compressed data, this is passed to the compression library for decompression.

	nan_encodings

	bytes

	
	Run-length encodings of NaN values. These values are used to restore the NaN values after decompression.

	mip

	sfixed32

	
	Mip coordinate. Ignored if layer >= 0

5.3. Enums

5.3.1. CatalogFileType

Source file: shared/enums.proto [https://github.com/CARTAvis/carta-protobuf/blob/dev/shared/enums.proto]

	Name

	Number

	Description

	FITSTable

	0

	

	VOTable

	1

	

	Unknown

	2

	

5.3.2. ClientFeatureFlags

Source file: shared/enums.proto [https://github.com/CARTAvis/carta-protobuf/blob/dev/shared/enums.proto]

	Name

	Number

	Description

	CLIENT_FEATURE_NONE

	0

	

	WEB_GL

	1

	

	WEB_GL_2

	2

	

	WEB_ASSEMBLY

	4

	

	WEB_ASSEMBLY_THREADS

	8

	

	OFFSCREEN_CANVAS

	16

	

5.3.3. ColumnType

Source file: shared/enums.proto [https://github.com/CARTAvis/carta-protobuf/blob/dev/shared/enums.proto]

	Name

	Number

	Description

	UnsupportedType

	0

	

	String

	1

	

	Uint8

	2

	

	Int8

	3

	

	Uint16

	4

	

	Int16

	5

	

	Uint32

	6

	

	Int32

	7

	

	Uint64

	8

	

	Int64

	9

	

	Float

	10

	

	Double

	11

	

	Bool

	12

	

5.3.4. ComparisonOperator

Source file: shared/enums.proto [https://github.com/CARTAvis/carta-protobuf/blob/dev/shared/enums.proto]

	Name

	Number

	Description

	Equal

	0

	

	NotEqual

	1

	

	Lesser

	2

	

	Greater

	3

	

	LessorOrEqual

	4

	

	GreaterOrEqual

	5

	

	RangeOpen

	6

	

	RangeClosed

	7

	

5.3.5. CompressionType

Source file: shared/enums.proto [https://github.com/CARTAvis/carta-protobuf/blob/dev/shared/enums.proto]

	Name

	Number

	Description

	NONE

	0

	

	ZFP

	1

	

	SZ

	2

	

5.3.6. CoordinateType

Source file: shared/enums.proto [https://github.com/CARTAvis/carta-protobuf/blob/dev/shared/enums.proto]

	Name

	Number

	Description

	PIXEL

	0

	

	WORLD

	1

	

5.3.7. EntryType

Source file: shared/enums.proto [https://github.com/CARTAvis/carta-protobuf/blob/dev/shared/enums.proto]

	Name

	Number

	Description

	STRING

	0

	

	FLOAT

	1

	

	INT

	2

	

5.3.8. ErrorSeverity

Source file: shared/enums.proto [https://github.com/CARTAvis/carta-protobuf/blob/dev/shared/enums.proto]

	Name

	Number

	Description

	DEBUG

	0

	

	INFO

	1

	

	WARNING

	2

	

	ERROR

	3

	

	CRITICAL

	4

	

5.3.9. EventType

Source file: shared/enums.proto [https://github.com/CARTAvis/carta-protobuf/blob/dev/shared/enums.proto]

	Name

	Number

	Description

	EMPTY_EVENT

	0

	

	REGISTER_VIEWER

	1

	

	FILE_LIST_REQUEST

	2

	

	FILE_INFO_REQUEST

	3

	

	OPEN_FILE

	4

	

	SET_IMAGE_CHANNELS

	6

	

	SET_CURSOR

	7

	

	SET_SPATIAL_REQUIREMENTS

	8

	

	SET_HISTOGRAM_REQUIREMENTS

	9

	

	SET_STATS_REQUIREMENTS

	10

	

	SET_REGION

	11

	

	REMOVE_REGION

	12

	

	CLOSE_FILE

	13

	

	SET_SPECTRAL_REQUIREMENTS

	14

	

	START_ANIMATION

	15

	

	START_ANIMATION_ACK

	16

	

	STOP_ANIMATION

	17

	

	REGISTER_VIEWER_ACK

	18

	

	FILE_LIST_RESPONSE

	19

	

	FILE_INFO_RESPONSE

	20

	

	OPEN_FILE_ACK

	21

	

	SET_REGION_ACK

	22

	

	REGION_HISTOGRAM_DATA

	23

	

	SPATIAL_PROFILE_DATA

	25

	

	SPECTRAL_PROFILE_DATA

	26

	

	REGION_STATS_DATA

	27

	

	ERROR_DATA

	28

	

	ANIMATION_FLOW_CONTROL

	29

	

	ADD_REQUIRED_TILES

	30

	

	REMOVE_REQUIRED_TILES

	31

	

	RASTER_TILE_DATA

	32

	

	REGION_LIST_REQUEST

	33

	

	REGION_LIST_RESPONSE

	34

	

	REGION_FILE_INFO_REQUEST

	35

	

	REGION_FILE_INFO_RESPONSE

	36

	

	IMPORT_REGION

	37

	

	IMPORT_REGION_ACK

	38

	

	EXPORT_REGION

	39

	

	EXPORT_REGION_ACK

	40

	

	SET_CONTOUR_PARAMETERS

	45

	

	CONTOUR_IMAGE_DATA

	46

	

	RESUME_SESSION

	47

	

	RESUME_SESSION_ACK

	48

	

	RASTER_TILE_SYNC

	49

	

	CATALOG_LIST_REQUEST

	50

	

	CATALOG_LIST_RESPONSE

	51

	

	CATALOG_FILE_INFO_REQUEST

	52

	

	CATALOG_FILE_INFO_RESPONSE

	53

	

	OPEN_CATALOG_FILE

	54

	

	OPEN_CATALOG_FILE_ACK

	55

	

	CLOSE_CATALOG_FILE

	56

	

	CATALOG_FILTER_REQUEST

	57

	

	CATALOG_FILTER_RESPONSE

	58

	

	SCRIPTING_REQUEST

	59

	

	SCRIPTING_RESPONSE

	60

	

	MOMENT_REQUEST

	61

	

	MOMENT_RESPONSE

	62

	

	MOMENT_PROGRESS

	63

	

	STOP_MOMENT_CALC

	64

	

	SAVE_FILE

	65

	

	SAVE_FILE_ACK

	66

	

	CONCAT_STOKES_FILES

	69

	

	CONCAT_STOKES_FILES_ACK

	70

	

	FILE_LIST_PROGRESS

	71

	

	STOP_FILE_LIST

	72

	

	PV_REQUEST

	75

	

	PV_RESPONSE

	76

	

	PV_PROGRESS

	77

	

	STOP_PV_CALC

	78

	

	FITTING_REQUEST

	79

	

	FITTING_RESPONSE

	80

	

	SET_VECTOR_OVERLAY_PARAMETERS

	81

	

	VECTOR_OVERLAY_TILE_DATA

	82

	

	FITTING_PROGRESS

	83

	

	STOP_FITTING

	84

	

	PV_PREVIEW_DATA

	85

	

	STOP_PV_PREVIEW

	86

	

	CLOSE_PV_PREVIEW

	87

	

5.3.10. FileFeatureFlags

Source file: shared/enums.proto [https://github.com/CARTAvis/carta-protobuf/blob/dev/shared/enums.proto]

	Name

	Number

	Description

	FILE_FEATURE_NONE

	0

	

	ROTATED_DATASET

	1

	

	CHANNEL_HISTOGRAMS

	2

	

	CUBE_HISTOGRAMS

	4

	

	CHANNEL_STATS

	8

	

	MEAN_IMAGE

	16

	

	MIP_DATASET

	32

	

5.3.11. FileListFilterMode

Source file: shared/enums.proto [https://github.com/CARTAvis/carta-protobuf/blob/dev/shared/enums.proto]

	Name

	Number

	Description

	Content

	0

	

	Extension

	1

	

	AllFiles

	2

	

5.3.12. FileListType

Source file: shared/enums.proto [https://github.com/CARTAvis/carta-protobuf/blob/dev/shared/enums.proto]

	Name

	Number

	Description

	Image

	0

	

	Catalog

	1

	

5.3.13. FileType

Source file: shared/enums.proto [https://github.com/CARTAvis/carta-protobuf/blob/dev/shared/enums.proto]

	Name

	Number

	Description

	CASA

	0

	

	CRTF

	1

	

	DS9_REG

	2

	

	FITS

	3

	

	HDF5

	4

	

	MIRIAD

	5

	

	UNKNOWN

	6

	

5.3.14. FittingSolverType

Source file: shared/enums.proto [https://github.com/CARTAvis/carta-protobuf/blob/dev/shared/enums.proto]

Types of solvers for the linear least squares system in image fittings

	Name

	Number

	Description

	Qr

	0

	Uses a rank revealing QR decomposition

	Cholesky

	1

	Uses a Cholesky decomposition

	Mcholesky

	2

	Uses a modified Cholesky decomposition

	Svd

	3

	Uses a singular value decomposition

5.3.15. Moment

Source file: shared/enums.proto [https://github.com/CARTAvis/carta-protobuf/blob/dev/shared/enums.proto]

	Name

	Number

	Description

	MEAN_OF_THE_SPECTRUM

	0

	

	INTEGRATED_OF_THE_SPECTRUM

	1

	

	INTENSITY_WEIGHTED_COORD

	2

	

	INTENSITY_WEIGHTED_DISPERSION_OF_THE_COORD

	3

	

	MEDIAN_OF_THE_SPECTRUM

	4

	

	MEDIAN_COORDINATE

	5

	

	STD_ABOUT_THE_MEAN_OF_THE_SPECTRUM

	6

	

	RMS_OF_THE_SPECTRUM

	7

	

	ABS_MEAN_DEVIATION_OF_THE_SPECTRUM

	8

	

	MAX_OF_THE_SPECTRUM

	9

	

	COORD_OF_THE_MAX_OF_THE_SPECTRUM

	10

	

	MIN_OF_THE_SPECTRUM

	11

	

	COORD_OF_THE_MIN_OF_THE_SPECTRUM

	12

	

5.3.16. MomentAxis

Source file: shared/enums.proto [https://github.com/CARTAvis/carta-protobuf/blob/dev/shared/enums.proto]

	Name

	Number

	Description

	SPECTRAL

	0

	

	STOKES

	1

	

5.3.17. MomentMask

Source file: shared/enums.proto [https://github.com/CARTAvis/carta-protobuf/blob/dev/shared/enums.proto]

	Name

	Number

	Description

	None

	0

	

	Include

	1

	

	Exclude

	2

	

5.3.18. PointAnnotationShape

Source file: shared/enums.proto [https://github.com/CARTAvis/carta-protobuf/blob/dev/shared/enums.proto]

	Name

	Number

	Description

	SQUARE

	0

	

	BOX

	1

	

	CIRCLE

	2

	

	CIRCLE_LINED

	3

	

	DIAMOND

	4

	

	DIAMOND_LINED

	5

	

	CROSS

	6

	

	X

	7

	

5.3.19. PolarizationType

Source file: shared/enums.proto [https://github.com/CARTAvis/carta-protobuf/blob/dev/shared/enums.proto]

polarization parameters including the Stokes parameters, circular correlations, and linear correlations (the Stokes axis defined by the FITS standard)

	Name

	Number

	Description

	POLARIZATION_TYPE_NONE

	0

	

	I

	1

	

	Q

	2

	

	U

	3

	

	V

	4

	

	RR

	5

	

	LL

	6

	

	RL

	7

	

	LR

	8

	

	XX

	9

	

	YY

	10

	

	XY

	11

	

	YX

	12

	

	Ptotal

	13

	Polarized intensity: sqrt(Q^2 + U^2 + V^2)

	Plinear

	14

	Linearly Polarized intensity: sqrt(Q^2 + U^2)

	PFtotal

	15

	Polarization Fraction: Ptotal / I

	PFlinear

	16

	Linear Polarization Fraction: Plinear / I

	Pangle

	17

	Linear Polarization Angle: arctan(U/Q) / 2

5.3.20. ProfileAxisType

Source file: shared/enums.proto [https://github.com/CARTAvis/carta-protobuf/blob/dev/shared/enums.proto]

	Name

	Number

	Description

	Offset

	0

	

	Distance

	1

	

5.3.21. RegionType

Source file: shared/enums.proto [https://github.com/CARTAvis/carta-protobuf/blob/dev/shared/enums.proto]

	Name

	Number

	Description

	POINT

	0

	

	LINE

	1

	

	POLYLINE

	2

	

	RECTANGLE

	3

	

	ELLIPSE

	4

	

	ANNULUS

	5

	

	POLYGON

	6

	

	ANNPOINT

	7

	

	ANNLINE

	8

	

	ANNPOLYLINE

	9

	

	ANNRECTANGLE

	10

	

	ANNELLIPSE

	11

	

	ANNPOLYGON

	12

	

	ANNVECTOR

	13

	

	ANNRULER

	14

	

	ANNTEXT

	15

	

	ANNCOMPASS

	16

	

5.3.22. RenderMode

Source file: shared/enums.proto [https://github.com/CARTAvis/carta-protobuf/blob/dev/shared/enums.proto]

	Name

	Number

	Description

	RASTER

	0

	

	CONTOUR

	1

	

5.3.23. ServerFeatureFlags

Source file: shared/enums.proto [https://github.com/CARTAvis/carta-protobuf/blob/dev/shared/enums.proto]

	Name

	Number

	Description

	SERVER_FEATURE_NONE

	0

	

	SZ_COMPRESSION

	1

	

	HEVC_COMPRESSION

	2

	

	NVENC_COMPRESSION

	4

	

	READ_ONLY

	8

	Disables write requests, including saving files, exporting regions, and writing preferences and layouts files.

	USER_PREFERENCES

	16

	

	USER_LAYOUTS

	32

	

	SCRIPTING

	64

	

5.3.24. SessionType

Source file: shared/enums.proto [https://github.com/CARTAvis/carta-protobuf/blob/dev/shared/enums.proto]

	Name

	Number

	Description

	NEW

	0

	

	RESUMED

	1

	

5.3.25. SmoothingMode

Source file: shared/enums.proto [https://github.com/CARTAvis/carta-protobuf/blob/dev/shared/enums.proto]

	Name

	Number

	Description

	NoSmoothing

	0

	

	BlockAverage

	1

	

	GaussianBlur

	2

	

5.3.26. SortingType

Source file: shared/enums.proto [https://github.com/CARTAvis/carta-protobuf/blob/dev/shared/enums.proto]

	Name

	Number

	Description

	Ascending

	0

	

	Descending

	1

	

5.3.27. StatsType

Source file: shared/enums.proto [https://github.com/CARTAvis/carta-protobuf/blob/dev/shared/enums.proto]

	Name

	Number

	Description

	NumPixels

	0

	

	NanCount

	1

	

	Sum

	2

	

	FluxDensity

	3

	

	Mean

	4

	

	RMS

	5

	

	Sigma

	6

	

	SumSq

	7

	

	Min

	8

	

	Max

	9

	

	Extrema

	10

	

	Blc

	11

	

	Trc

	12

	

	MinPos

	13

	

	MaxPos

	14

	

	Blcf

	15

	

	Trcf

	16

	

	MinPosf

	17

	

	MaxPosf

	18

	

5.3.28. TextAnnotationPosition

Source file: shared/enums.proto [https://github.com/CARTAvis/carta-protobuf/blob/dev/shared/enums.proto]

	Name

	Number

	Description

	CENTER

	0

	

	UPPER_LEFT

	1

	

	UPPER_RIGHT

	2

	

	LOWER_LEFT

	3

	

	LOWER_RIGHT

	4

	

	TOP

	5

	

	BOTTOM

	6

	

	LEFT

	7

	

	RIGHT

	8

	

Index

 nav.xhtml

 Table of Contents

 		
 CARTA Interface Control Document

 		
 Introduction

 		
 Context

 		
 Behaviour

 		
 Connection

 		
 File browsing

 		
 Data cube navigation

 		
 Zooming and panning

 		
 Channel navigation

 		
 Animation

 		
 Changing view parameters

 		
 Region selection and statistics

 		
 Region creation

 		
 Cursor updates

 		
 Region requirements

 		
 Per-cube histograms

 		
 Data streaming

 		
 User preferences

 		
 Resume the session

 		
 Catalog overlay

 		
 Sequence Diagrams

 		
 Moments generator

 		
 Image fitting

 		
 Layer descriptions

 		
 Application Layer

 		
 Presentation layer

 		
 Session Layer

 		
 Transport Layer

 		
 Protocol buffer reference

 		
 Messages

 		
 AddRequiredTiles

 		
 AnimationFlowControl

 		
 CatalogFileInfoRequest

 		
 CatalogFileInfoResponse

 		
 CatalogFilterRequest

 		
 CatalogFilterResponse

 		
 CatalogListRequest

 		
 CatalogListResponse

 		
 CloseCatalogFile

 		
 CloseFile

 		
 ClosePvPreview

 		
 ConcatStokesFiles

 		
 ConcatStokesFilesAck

 		
 ContourImageData

 		
 ContourSet

 		
 ErrorData

 		
 ExportRegion

 		
 ExportRegionAck

 		
 FileInfoRequest

 		
 FileInfoResponse

 		
 FileListRequest

 		
 FileListResponse

 		
 FittingProgress

 		
 FittingRequest

 		
 FittingResponse

 		
 ImageProperties

 		
 ImportRegion

 		
 ImportRegionAck

 		
 MomentProgress

 		
 MomentRequest

 		
 MomentResponse

 		
 OpenCatalogFile

 		
 OpenCatalogFileAck

 		
 OpenFile

 		
 OpenFileAck

 		
 PvPreviewData

 		
 PvProgress

 		
 PvRequest

 		
 PvResponse

 		
 RasterTileData

 		
 RasterTileSync

 		
 RegionFileInfoRequest

 		
 RegionFileInfoResponse

 		
 RegionHistogramData

 		
 RegionListRequest

 		
 RegionListResponse

 		
 RegionStatsData

 		
 RegisterViewer

 		
 RegisterViewerAck

 		
 RemoveRegion

 		
 RemoveRequiredTiles

 		
 ResumeSession

 		
 ResumeSessionAck

 		
 SaveFile

 		
 SaveFileAck

 		
 ScriptingRequest

 		
 ScriptingResponse

 		
 SetContourParameters

 		
 SetCursor

 		
 SetHistogramRequirements

 		
 SetImageChannels

 		
 SetRegion

 		
 SetRegionAck

 		
 SetSpatialRequirements

 		
 SetSpectralRequirements

 		
 SetStatsRequirements

 		
 SetVectorOverlayParameters

 		
 SpatialConfig

 		
 SpatialProfileData

 		
 SpectralConfig

 		
 SpectralProfileData

 		
 StartAnimation

 		
 StartAnimationAck

 		
 StatsConfig

 		
 StokesFile

 		
 StopAnimation

 		
 StopFileList

 		
 StopFitting

 		
 StopMomentCalc

 		
 StopPvCalc

 		
 StopPvPreview

 		
 VectorOverlayTileData

 		
 Sub-messages

 		
 AnimationFrame

 		
 AnnotationStyle

 		
 AxesNumbers

 		
 Beam

 		
 CatalogFileInfo

 		
 CatalogHeader

 		
 CatalogImageBounds

 		
 ColumnData

 		
 Coosys

 		
 DirectoryInfo

 		
 DoubleBounds

 		
 DoublePoint

 		
 FileInfo

 		
 FileInfoExtended

 		
 FilterConfig

 		
 FloatBounds

 		
 GaussianComponent

 		
 HeaderEntry

 		
 Histogram

 		
 HistogramConfig

 		
 ImageBounds

 		
 IntBounds

 		
 LineProfileAxis

 		
 ListProgress

 		
 MatchedFrameList

 		
 Point

 		
 PvPreviewSettings

 		
 RegionInfo

 		
 RegionStyle

 		
 SpatialProfile

 		
 SpectralProfile

 		
 StatisticsValue

 		
 TileData

 		
 Enums

 		
 CatalogFileType

 		
 ClientFeatureFlags

 		
 ColumnType

 		
 ComparisonOperator

 		
 CompressionType

 		
 CoordinateType

 		
 EntryType

 		
 ErrorSeverity

 		
 EventType

 		
 FileFeatureFlags

 		
 FileListFilterMode

 		
 FileListType

 		
 FileType

 		
 FittingSolverType

 		
 Moment

 		
 MomentAxis

 		
 MomentMask

 		
 PointAnnotationShape

 		
 PolarizationType

 		
 ProfileAxisType

 		
 RegionType

 		
 RenderMode

 		
 ServerFeatureFlags

 		
 SessionType

 		
 SmoothingMode

 		
 SortingType

 		
 StatsType

 		
 TextAnnotationPosition

_static/file.png

_static/minus.png

_static/plus.png

